• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 39
  • 14
  • 10
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 213
  • 213
  • 61
  • 51
  • 47
  • 41
  • 39
  • 27
  • 27
  • 26
  • 24
  • 24
  • 24
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electrophysiological and behavioural studies of the superior colliculus in behaving rats

Wang, Hongying January 1998 (has links)
No description available.
12

The role of the subthalamic nucleus in the basal ganglia

Gillies, Andrew J. January 1995 (has links)
The basal ganglia are a collection of interconnected subcortical nuclei which have been implicated inmotor, cognitive and limbic functions. The subthalamic nucleus is the sole excitatory structure within the basal ganglia. Given its central position influencingmany basal ganglia nuclei, it is likely to play an important role in the processing that is performed by the basal ganglia. In this thesis a theoretical analysis of the subthalamic nucleus is presented. In order to explore the multiple facets of processing that may be occurring, models that are designed to capture aspects of the subthalamic nucleus at different levels are developed. These include anatomical, network processing and single neuron multi–compartmental models. Through the integration of the results obtained from these models a new and coherent view of the processing of the subthalamic nucleus is presented. It is predicted that the subthalamic nucleus be considered as a massively connected excitatory network. Two distinct modes of asymptotic behaviour exist in such a network: a low resting state and a high self–sustained state. The single neuron multi– compartmental model demonstrates that the calcium T–type channel is the primary determinant of characteristic neuron behaviour. Such behaviour includes a slowaction potential, initial spike clustering, and a post-response quiescence. The network and single neuron results taken togetherprovide an intrinsicmechanismfor termination of uniform high activity generated by the excitatory network. It is therefore predicted that large regions of the subthalamic nucleus respond uniformly to stimuli, in the form of a pulse of activity with a sharp rise and fall. In addition, the single neuron model indicates that pulses will occur in pairs. It is proposedthat the subthalamic nucleus acts as a “braking mechanism”. It can induce, via intermediate structures, awide-spread pulse of inhibition on basal ganglia target nuclei. Furthermore, the sequence of two pulses can generate a window of disinhibition over the basal ganglia targets. The width of this time window may be under direct striatal control. Variable interpulse duration implies a role for the subthalamic nucleus in temporal processing.
13

Investigating the contribution of the basal ganglia in the selective gating of saccade initiation

Gore, Joanna Lea 22 July 2008 (has links)
An important function of the brain is to inhibit irrelevant behaviors. This thesis examines the role of the basal ganglia in response suppression using saccadic eye movements as a model of behavior. We measured the activity of single saccade-related neurons in primate Substantia Nigra pars reticulata (SNr), a main output structure of the basal ganglia, while the context surrounding the initiation and suppression of saccades was manipulated. Inserting a temporal gap of no stimuli between the disappearance of a central visual fixation point and the appearance of a peripheral visual target leads to a reduction in saccadic reaction times (SRT); the ‘gap’ effect. SNr pause neurons decreased their activity during the gap and this decrease correlated with SRT. This finding suggests the SNr may contribute directly to producing the gap effect and that signals related to the effect are propagating through a frontal-basal ganglia circuitry to impact pre-saccade processing. Interleaving pro-saccade (look towards a visual stimulus) and anti-saccade (look away from visual stimulus) trials allowed us to investigate how neural processes change when preparing to suppress a saccade instead of making one automatically. We show that SNr neurons exhibit activity consistent with both suppression of automatic responses and facilitation of voluntary responses, during anti-saccades. These data provide direct neurophysiological evidence for a dual role of inhibitory and disinhibitory basal ganglia outputs in the flexible shaping of behavior. Parkinson’s disease (PD) is a neurodegenerative disorder that impairs motor function due to depletion of dopamine in the striatum. Using an oculomotor countermanding paradigm, we found that PD patients were unable to suppress saccades to a peripheral target, providing evidence that the SNr performs a gating function that mediates the initiation and suppression of saccades. When pathology to the circuitry occurs, inhibitory control over saccades is affected. In Conclusion, using a variety of behavioral contexts, this thesis has demonstrated that the basal ganglia, specifically the SNr, mediates the suppression and voluntary initiation of saccades, possibly via an inhibitory gating mechanism, and that this role is important for successful interaction with a dynamic environment. / Thesis (Ph.D, Physiology) -- Queen's University, 2008-07-16 12:06:19.188
14

Feedback motor control and the basal ganglia

Brown, Jennifer January 2014 (has links)
No description available.
15

The role of basal ganglia circuitry in motivation

Poyraz, Fernanda Carvalho January 2016 (has links)
The basal ganglia are a set of subcortical nuclei in the forebrain of vertebrates that are highly conserved among mammals. Classically, dysfunction in the basal ganglia has been linked to motor abnormalities. However, it is now widely recognized that in addition to their role in motor behavior, these set of nuclei play a role in reinforcement learning and motivated behavior as well as in many diseases that present with abnormal motivation. In this dissertation, I first provide a review of the literature that describes the current state of research on the basal ganglia and the background for the original studies I later present. I describe the anatomy and physiology of the basal ganglia, including how structures are interconnected to form two parallel pathways, the direct and the indirect pathways. I further review published studies that have investigated how the basal ganglia regulate motor behavior and motivation. And finally, I also summarize findings on how disruption in basal ganglia circuitry function has been linked to a number of neuropsychiatric diseases, with special focus on the symptoms of schizophrenia. I then present original data and discuss the results of three studies investigating basal ganglia function and behavior. In the first study, I investigated the bridging collaterals, axon collaterals of direct-pathway medium spiny neurons (dMSNs) in the striatum that target the external segment of the globus (GPe), the canonical target of indirect-pathway medium spiny neurons (iMSNs). Previous work in the Kellendonk laboratory has linked these collaterals to increased dopamine D2 receptor (D2R) function and increased striatal excitability, as well as to abnormal locomotor response to stimulation of the direct pathway. I expanded on these findings by first demonstrating that bridging collaterals form synaptic contacts with GPe cells. I was also able to generate a viral vector to selectively increase excitability in specific populations of MSNs. I used this virus to show that chronically increasing excitability of the indirect pathway, but not the direct pathway, leads to a circuit-level change in connectivity by inducing the growth of bridging collaterals from dMSNs in the GPe. I also confirmed that increased density of bridging collaterals are associated with an abnormal locomotor response to stimulation of striatal dMSNs and further demonstrated that chronic pharmacologic blockade of D2Rs can rescue this abnormal locomotor phenotype. Furthermore, I found that motor training reverses the enhanced density of bridging collaterals and partially rescue the abnormal locomotor phenotype associated with increased collaterals, thereby establishing a new link between connectivity in the basal ganglia and motor learning. In the second study, I conducted a series of experiments in which I selectively increased excitability of the direct or indirect pathway in specific striatal sub-regions that have been implicated in goal-directed behavior, namely the DMS and NA core. I found that this manipulation was not sufficient to induce significant effects in different behavioral assays of locomotion and motivation, including the progressive ratio and concurrent choice tasks. These findings also suggest that increased bridging collateral density does not have a one-to-one relationship with the motivational deficit of D2R-OEdev mice, as previously hypothesized. In the third and final study, my original aim was to determine whether the motivational deficit of D2R-OEdev mice, induced by upregulation of D2Rs in the striatum, could be reversed by acutely activating Gαi-coupled signaling in the indirect pathway in these animals. I found that this manipulation increased motivation in D2R-OEdev mice but also in control littermates. This effect was due to energized behavioral performance, which, however, came at the cost of goal-directed efficiency. Moreover, selective manipulation of MSNs in either the DMS or NA core showed that both striatal regions contribute to this effect on motivation. Further investigation aimed at understanding how Gαi-coupled signaling affects striatal circuit function revealed that activating a Gαi-coupled receptor did not lead to a significant change in somatic MSN activity in vivo or to a change in neuronal excitability in vitro. In contrast, the GPe, which receives monosynaptic inhibition from the indirect pathway, showed disinhibited activity when Gαi signaling was activated in striatal iMSNs. In addition, as drug therapies for psychiatric diseases are not usually given acutely but involve long-term, continuous administrations, I also studied how chronically decreasing function of iMSNs would affect behavior. I showed that chronically activating a Gαi-coupled receptor in iMSNs does not lead to a measurable effect on locomotion or motivation, a behavioral desensitization response that can be recovered within 48 h and may be due to receptor desensitization to the drug or circuit-level compensation to a chronic decrease in iMSN function. Finally, I conclude this dissertation with a general discussion addressing how the findings from each study can be related to each other to provide a more complete understanding of how basal ganglia function regulate behavior, how disruption in the basal ganglia can underlie neuropsychiatric disease, and how strategies to target basal ganglia function should be employed to treat disorders of motivation. I conclude this dissertation by proposing new avenues of research for further exploring my findings.
16

Structure-Dynamics relationship in basalganglia: Implications for brain function

Bahuguna, Jyotika January 2016 (has links)
In this thesis, I have used a combination of computational models such as mean field and spikingnetwork simulations to study various sub-circuits of basal ganglia. I first studied the striatum(chapter 2), which is the input nucleus of basal ganglia. The two types of Medium SpinyNeurons (MSNs), D1 and D2-MSNs, together constitute 98% of the neurons in striatum. Thecomputational models so far have treated striatum as a homogenous unit and D1 and D2 MSNs asinterchangeable subpopulations. This implied that a bias in a Go/No-Go decision is enforced viaexternal agents to the striatum (eg. cortico-striatal weights), thereby assigning it a passive role.New data shows that there is an inherent asymmetry in striatal circuits. In this work, I showedthat striatum due to its asymmetric connectivity acts as a decision transition threshold devicefor the incoming cortical input. This has significant implications on the function of striatum asan active participant in influencing the bias towards a Go/No-Go decision. The striatal decisiontransition threshold also gives mechanistic explanations for phenomena such as L-Dopa InducedDyskinesia (LID), DBS-induced impulsivity, etc. In chapter 3, I extend the mean field model toinclude all the nuclei of basal ganglia to specifically study the role of two new subpopulationsfound in GPe (Globus Pallidus Externa). Recent work shows that GPe, also earlier consideredto be a homogenous nucleus, has at least two subpopulations which are dichotomous in theiractivity with respect to the cortical Slow Wave (SWA) and beta activity. Since the data for thesesubpopulations are missing, a parameter search was performed for effective connectivities usingGenetic Algorithms (GA) to fit the available experimental data. One major result of this studyis that there are various parameter combinations that meet the criteria and hence the presenceof functional homologs of the basal ganglia network for both pathological (PD) and healthynetworks is a possibility. Classifying all these homologous networks into clusters using somehigh level features of PD shows a large variance, hinting at the variance observed among the PDpatients as well as their response to the therapeutic measures. In chapter 4, I collaborated on aproject to model the role of STN and GPe burstiness for pathological beta oscillations as seenduring PD. During PD, the burstiness in the firing patterns of GPe and STN neurons are shownto increase. We found that in the baseline state, without any bursty neurons in GPe and STN,the GPe-STN network can transition to an oscillatory state through modulating the firing ratesof STN and GPe neurons. Whereas when GPe neurons are systematically replaced by burstyneurons, we found that increase in GPe burstiness enforces oscillations. An optimal % of burstyneurons in STN destroys oscillations in the GPe-STN network. Hence burstiness in STN mayserve as a compensatory mechanism to destroy oscillations. We also propose that bursting inGPe-STN could serve as a mechanism to initiate and kill oscillations on short time scales, asseen in the healthy state. The GPe-STN network however loses the ability to kill oscillations inthe pathological state. / <p>QC 20160509</p>
17

Characterisation and segmentation of basal ganglia mineralization in normal ageing with multimodal structural MRI

Glatz, Andreas January 2016 (has links)
Iron is the most abundant trace metal in the brain and is essential for many biological processes, such as neurotransmitter synthesis and myelin formation. This thesis investigates small, multifocal hypointensities that are apparent on T2*- weighted (T2*w) MRI in the basal ganglia, where presumably most iron enters the brain via the blood-brain-barrier along the penetrating arteries. These basal ganglia T2*w hypointensities are believed to arise from iron-rich microvascular mineral deposits, which are frequently found in community-dwelling elderly subjects and are associated with age-related cognitive decline. This thesis documents the characteristic spatial distribution and morphology of basal ganglia T2*w hypointensities of 98 community-dwelling, elderly subjects in their seventies, as well as their imaging signatures on T1-weighted (T1w) and T2- weighted (T2w) MRI. A fully automated, novel method is introduced for the segmentation of basal ganglia T2*w hypointensities, which was developed to reduce the high intra- and inter-rater variability associated with current semi-automated segmentation methods and to facilitate the segmentation of these features in other single- and multi-centre studies. This thesis also presents a multi parametric quantitative MRI relaxometry methodology for conventional clinical MRI scanners that was developed and validated to improve the characterisation of brain iron. Lastly, this thesis describes the application of the developed methods in the segmentation of basal ganglia T2*w hypointensities of 243 community-dwelling participants of the Austrian Stroke Prevention Study Family (ASPS-Fam) and their analysis on R2* (=1/T2*) relaxation rate and Larmor frequency shift maps. This work confirms that basal ganglia T2*w hypointensities, especially in the globus pallidus, are potentially MRI markers of microvascular mineralization. Furthermore, the ASPS-Fam results show that basal ganglia mineral deposits mainly consist of paramagnetic particles, which presumably arise from an imbalance in the brain iron homeostasis. Hence, basal ganglia T2*w hypointensities are possibly an indicator of age-related microvascular dysfunction with iron accumulation, which might help to explain the variability of cognitive decline in normal ageing.
18

Developmental expression of N-methyl-D-aspartate and gamma-aminobutyric acid receptors in the rat basal ganglia

Lau, Wai Kit Jaeger 01 January 2004 (has links)
No description available.
19

Electrophysiological effects in the rat basal ganglia following systemic adenosine A2A receptor stimulation and dopamine D2 receptor blockade

Voicu, Cristian, n/a January 2008 (has links)
The difficulty with movement initiation, or akinesia, is a cardinal symptom of Parkinson�s disease (PD) and the loss of dopaminergic cells, affecting the function of the basal ganglia, the thalamus and the motor cortex, has long been documented. From a broader perspective, it has been proposed that akinesia is caused by impaired function in different brain areas, inside and outside the basal ganglia, operating as a �behavioural arrest control system� (Klemm, 2001). Several neurotransmitters seem to modulate the activity of this system and, contrasting the well-known effects of dopamine, the involvement of adenosine has only recently emerged, particularly via A2A receptors. Adenosine plays an opposite role to dopamine in the brain: adenosine stimulation at A2A receptors inhibits movement (Ferre et al., 1991a; Hauber and Munkle, 1995; Rimondini et al., 1997), whereas A2A antagonists seem to promote movement (Kanda et al., 2000; Bara-Jimenez et al., 2003; Pinna et al., 2005). Although specific adenosine A2A and dopamine D2 receptors are known to antagonistically interact (Ferre et al., 1997; Fuxe et al., 1998; Ferre et al., 2001), little is known of the involvement of A2A receptors in regulating neural activity in the basal ganglia, a crucial point for the future use of A2A antagonists as adjuvant therapy in Parkinson�s disease. In fact, although it is generally accepted that akinesia results from altered function in the cortico-basal ganglia-cortical loop, as confirmed in several studies reporting changes in basal ganglia activity following dopamine depletion (Blandini et al., 2000; Bevan et al., 2002; Boraud et al., 2002), no study to date has systematically investigated electrophysiological changes in the basal ganglia during akinesia induced by adenosine receptor stimulation. Starting from a common behavioural effect, this study tries to bridge this gap by investigating and comparing, in two basal ganglia structures, the neural substrate of akinesia after acute dopamine D2 receptor blockade and adenosine A2A receptor stimulation. The external segment of the globus pallidus (GP, or simply globus pallidus in the rat) and the substantia nigra pars reticulata (SNr) were chosen as the recording sites because both nuclei are included into the �behavioural arrest control system� and seem to express somewhat complementary functions, as a respective key integrative station and main output of the basal ganglia. Dopamine function was manipulated by acute decrease in availability of dopamine binding sites in the brain, through specific dopamine D2 receptor blockade with systemic injections (1.0 and 1.5 mg/kg) of raclopride(3,5-dichloro-N-[(1-ethylpyrrolidin-2-y)methyl]-2-hydroxy-6-methoxy-benzamide), resulting in akinesia. Conversely, movement was inhibited by specific adenosine A2A receptor stimulation with systemic injections (2.5 and 5.0 mg/kg) of the drug CGS21680 (sodium-2-p-carboxyethylphenylamino-5-N-carboxamidoadenosine). In both situations, behaviour was assessed through specific akinesia tests. Single neuron activity before injection and changes in the firing frequency and firing pattern occurring after injection have been analysed and compared for each cell recorded from GP and SNr, during periods of behavioural rest. Synchronised firing between cell pairs has also been assessed. However, the small number of cell pairs showing correlated firing in each structure after systemic injection of drugs was not statistically relevant for further analysis and interpretation of synchronised firing during drug induced akinesia. In our experiments, both drugs inhibited movement, albeit somewhat differently, with lack of rigidity and �flat� body position after adenosine stimulation. Dopamine blockade decreased mean firing rate and dramatically altered the firing pattern in both investigated structures, generally increasing burst activity (increased percentage of spikes in bursts, mean number of bursts, mean number of spikes per burst, mean intra-burst firing frequency) and decreasing regularity of firing (increased coefficient of variation of the inter-spike intervals). Increased burst activity in the rat basal ganglia in an acute model of parkinsonian akinesia, following systemic raclopride injections, confirmed the importance of changes in the firing pattern in PD. The only electrophysiological effect of systemic A2A stimulation was decreased mean firing rate in the GP, a weak effect that could not propagate towards output stations of the basal ganglia. The lack of changes in the firing pattern, at both input and output levels of the basal ganglia, suggests a correlation with the lack of rigidity in adenosine-stimulation-induced akinesia.
20

Functionally relevant basal ganglia subdivisions in first-episode schizophrenia

Khorram, Babak 05 1900 (has links)
Schizophrenia is among the most debilitating mental disorders, yet the pathophysiology remains unclear. The basal ganglia, a region of the brain involved in motor, cognitive, and sensory processes, may be involved in the pathophysiology of schizophrenia. Some, but not all, neuroimaging studies suggest abnormalities of the basal ganglia in schizophrenia. However, previous studies have examined whole basal ganglia nuclei as opposed to using a unified basal ganglia complex that incorporates anterior-posterior divisions, dorsal-ventral divisions, and gray-white matter segmentation. The hypothesis for the present study was that basal ganglia sub-regions forming functionally relevant subdivisions might be different in schizophrenia. Magnetic resonance imaging scans were acquired from 25 first-episode schizophrenia subjects and 24 healthy subjects. Using manual and automated neuroimaging techniques, total and segmented (gray-white matter) volumes were obtained for the caudate, putamen, and globus pallidus. For the striatum (caudate and putamen), total and segmented volumes were obtained for their respective sub-regions. These sub-regions were restructured into associative, limbic, and sensorimotor subdivisions. Schizophrenia subjects had 6% smaller gray matter volumes for the caudate and 8% smaller gray matter volumes for the associative striatum relative to healthy subjects. Basal ganglia function was studied by examining performance on a neuropsychological test that assesses frontostriatal functioning. For male subjects there was a significant negative correlation between volume of the associative striatum and performance on the neuropsychological test (r=-0.57, p=0.03). Smaller volumes of the associative striatum were associated with more errors on the neuropsychological test. This test was specific to the associative striatum, as another neuropsychological test did not reveal any correlation. In schizophrenia subjects, the relationship between basal ganglia volumes and motor symptoms severity was examined. For antipsychotic-naive subjects there was a significant negative correlation between volume of the motor striatum and severity of Parkinsonism (r=-0.65, p=0.03). The present study suggests that total basal ganglia nuclei volumes are not different in schizophrenia, but gray matter volumes of total basal ganglia nuclei and subdivisions forming functional units may be different in schizophrenia. Structural abnormalities involving the basal ganglia may lead to disrupted functional circuits in schizophrenia.

Page generated in 0.0429 seconds