• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 121
  • 44
  • 18
  • 16
  • 11
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 285
  • 68
  • 52
  • 35
  • 27
  • 22
  • 18
  • 18
  • 16
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Smyková pevnost vlákny vyztuženého polymerního kompozitu / Shear strength of the fiber-reinforced polymer composite

Jurko, Michal January 2020 (has links)
The diploma thesis deals with the study of Inter-Laminar Shear Strength (ILSS) of polymer composites, based on unsaturated polyester resin with unidirectionally oriented basalt or glass fibers. The basis of the experimental part is the preparation of composite samples with different types of surface treatment of a fibers (a reinforcement) as well as the surface treatment itself. The untreated, the commercially treated fibers and the plasmatreated fibers used as reinforcement in the polymer composites were analysed by a short beam shear test and their ILSS was determined. The effect of various deposition conditions during Plasma-Enhanced Chemical Vapour Deposition (PECVD) on the value of ILSS of the composite with originally unsized glass or basalt fibers was studied. The impact of aging on the interlaminar shear strength of the composites was investigated for commercially treated glass fibers. The Scanning Electron Microscopy (SEM) is also used in the thesis together with the Energy Dispersive Spectroscopy (EDS). Based on all the results a proposal was made to correct and improve the deposition conditions and thus improve the interphase to achieve the required shear properties of polymer composites.
172

Use of Macro Basalt Fibre Concrete for Marine Applications

Mohammadi Mohaghegh, Ali January 2016 (has links)
Deterioration of concrete structures due to the corrosion of embedded steel is a well-known universal problem. Norway with its numerous bridges, ports, offshore and floating structures along its coastline, is also encountered with corrosion degradation. The harsh environment of the Norwegian Sea regarding its low temperature, wind, and waves, makes the design and construction of marine structures more demanding. In recent years, usage of sustainable composite materials in the field of structural engineering has been rising. The usage of natural fibre reinforced polymer materials in the form of reinforcement bars or macro fibres with a low density, high strength, and excellent corrosion resistance, gives us better choices for the design and construction of marine structures. Our knowledge about the fibre reinforced self-compacting concrete has increased as a result of introducing it as a building material some decades ago. However, more research is still needed when it comes to the application of new types of fibres. This thesis is a result of this need, whereby the author has done two series of experimental programmes regarding the subject. In the first series, the flow characteristics of fresh state, conventional and self-compacting macro basalt fibre concrete were studied. In the second series, mechanical properties of high performance and medium strength macro basalt fibre concrete including the post-cracking behaviour, compressive strength and electrical resistivity were in focus. The findings were presented in three appended papers and the extended summary composing this thesis. Additionally, the thesis presents an overview of the design procedure of floating concrete structures and the possibility of using macro basalt fibre concrete via a case study. The author’s literature review shows that basalt fibres have an adequate resistance against alkali environment of the concrete matrix and corrosive environment of seawater. / <p>QC 20160607</p>
173

Links Between Eruptive Styles, Magmatic Evolution, and Morphology of Low-Shield Volcanoes: Snake River Plain, Idaho

Barton, Katelyn J. 10 July 2020 (has links)
In this study, connections between chemical composition, eruption style, and topographic features of two shield volcanoes on the Snake River Plain, Idaho are examined. These relationships may then be applied to understanding silicate volcanic features throughout the inner solar system. Despite their similar ages and geographic locations, two young basaltic shield volcanoes—Kimama Butte (87 Ka) and Rocky Butte (95 Ka)—have strikingly different topographic profiles. The Kimama Butte shield has a diameter of 9 km and a height of 210 m. In contrast, Rocky Butte has a broad 36 km topographic shield that rises 140 m with less than 1° slopes. The vent crater at Rocky Butte developed as a large lava blister inflated and then collapsed forming a crater in which a lava lake developed. Little spatter accumulated throughout the eruption. In contrast, high spatter mounds and spatter-fed flows flank the main summit crater at Kimama Butte. Major- and trace-element compositions of the basaltic lavas are similar at the two shields, but distinct in Ni and Al2O3. The lavas range in TiO2 concentrations from 2.6–4.5 wt.% for Kimama Butte and 2.6–4.3 wt.% for Rocky Butte. These ranges can be related to magma evolution by fractional crystallization involving plagioclase and olivine without clinopyroxene. Compositions of the pre-eruptive phenocrysts are also similar at both shields but show variation with evolution. Olivine cores in the more primitive lavas are more Mg-rich (Fo80-72) than those in the evolved rocks (Fo65-55). Plagioclase cores are similarly more calcic in the more primitive flows (An78-68) than in the evolved ones (An65-52). Like other olivine-tholeiites on the Snake River Plain, the fO2 and fH2O were probably low with fO2 at -2△QFM and 0.1 wt.% H2O. Pressure of crystallization estimated from MELTS models is less than 3 kbar (~10 km deep). Calculated temperatures and magma viscosities overlap at both Kimama Butte (1226 to1147°C and 158 to14 Pa·s) and Rocky Butte (1251 to 1145°C and 75 to 8 Pa·s). However, Kimama Butte magma viscosities extend ~80 Pa·s higher than those for Rocky Butte lavas. The higher magma viscosities are the result of higher phenocryst proportions in spatter and spatter-fed lavas concentrated near the vent. Because lava temperature, volatile content, and chemical composition overlap at the two volcanoes, they are probably not important controls of shield-volcano morphology. This suggests that steep-capped shields are not created as a simple function of having more silicic lavas. Melt viscosities are also similar, but Rocky Butte lacks the phenocryst-rich (>30 vol %), higher magma viscosity lavas and the high spatter ramparts that form the cap at Kimama Butte. Thus, we conclude that eruption style and phenocryst content play the most important role in developing a low-shield volcano summit. Where eruptions shifted from lava lake overflow and tube development to late fountaining with short spatter-fed phenocryst-rich flows, steeper, higher shields develop.
174

The stratigraphy and structure of the Columbia River basalt group in the Salmon River area, Oregon

Burck, Martin S. 01 January 1986 (has links)
Approximately 16 square km of Columbia River basalt are exposed in the Salmon River area to the south and to the west of Mount Hood, Oregon. A maximum composite basalt section composed of 15 flows and totaling 461 m is exposed in discontinuous areas of outcrop.
175

The stratigraphy of the Scappoose formation, the Astoria formation, and the Columbia River basalt group in northwestern Columbia County, Oregon

Ketrenos, Nancy Tompkins 01 January 1986 (has links)
The study area is located in northwestern Columbia County, and covers an area of approximately 70 square kilometers. The purpose of the study was to investigate the possible correlation of the Scappoose and Astoria Formations and determine their stratigraphic relationship to the Columbia River Basalt Group through mapping, geochemistry and petrography.
176

Explosion structures in Grande Ronde basalt of the Columbia Riverbasalt group, near Troy, Oregon

Orzol, Leonard Lee 01 January 1987 (has links)
Explosion structures occur in flows of Grande Ronde Basalt in the study area near Troy, Oregon. Data from nineteen stratigraphic sites indicate that the maximum number of flows that contain explosion structures at any one site is six. In the informally named Troy flow, explosion structures are widespread.
177

Global isotopic signatures of oceanic island basalts / by

Oschmann, Lynn A January 1991 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), 1991. / Includes bibliographical references (p. 247-253). / Sr, Nd and Pb isotopic analyses of 477 samples representing 30 islands or island groups, 3 seamounts or seamount chains, 2 oceanic ridges and 1 oceanic plateau [for a total of 36 geographic features] are compiled to form a comprehensive oceanic island basalt [OIB] data set. These samples are supplemented by 90 selected mid-ocean ridge basalt [MORB] samples to give adequate representation to MORB as an oceanic basalt end-member. This comprehensive data set is used to infer information about the Earth's mantle. Principal component analysis of the OIB+MORB data set shows that the first three principal components account for 97.5% of the variance of the data. Thus, only four mantle end-member components [EMI, EMII, HIMU and DMM I are required to completely encompass the range of known isotopic values. Each sample is expressed in terms of percentages of the four mantle components, assuming linear mixing. There is significant correlation between location and isotopic signature within geographic features, but not between them, so discrimination analysis of the viability of separating the oceanic islands into those lying inside and outside Hart's (1984, 1988) DUPAL belt is performed on the feature level and yields positive results. A "continuous layer model" is applied to the mantle component percentage data to solve for the spherical harmonic coefficients using approximation methods. Only the degrees 0-5 coefficients can be solved for since there are only 36 features. The EMI and HIMU percentage data sets must be filtered to avoid aliasing. Due to the nature of the data, the coefficients must be solved for using singular value decomposition [SVD], versus the least squares method. The F-test provides an objective way to estimate the number of singular values to retain when solving with SVD. With respect to the behavior of geophysics control data sets, only the degree 2 spherical harmonic coefficients for the mantle components can be estimated with a reasonable level of confidence with this method. Applying a "delta-function model" removes the problem of aliasing and simplifies the spherical harmonic coefficient solutions from integration on the globe to summation over the geographic features due to the properties of deltafunctions. With respect to the behavior of geophysics control data sets, at least the degree 2 spherical harmonic coefficients for the mantle components can be estimated with confidence, if not the degrees 3 and 4 as well. Delta-function model solutions are, to some extent, controlled by the nonuniform feature distribution, while the continuous layer model solutions are not. The mantle component amplitude spectra, for both models, show power at all degrees, with no one degree dominating. The DUPAL components [EMI, EMII and HIMU], for both models, correlate well with the degree 2 geoid, indicating a deep origin for the components since the degrees 2-3 geoid is inferred to result from topography at the core-mantle boundary. The DUPAL and DMM components, for both models, correlate well [and negatively] at degree 3 with the velocity anomalies of the Clayton-Comer seismic tomography model in the 2500-2900 km depth range [immediately above the core mantle boundary]. The EMII component correlates well [and positively] at degree 5 with the velocity anomalies of the Clayton-Comer model in the 700-1290 km depth range, indicating a subduction related origin. Similar positive correlations for the geoid in the upper lower mantle indicate that subducted slabs extend beyond the 670 km seismic discontinuity and support a whole-mantle convection model. / Lynn A. Oschmann. / Ph.D.
178

Exposure of Basaltic Materials to Venus Surface Conditions using the Glenn Extreme Environment Rig (GEER)

Radoman-Shaw, Brandon G. 23 May 2019 (has links)
No description available.
179

Untersuchung von Verbundwerkstoffen mit Basalt- und PBO-Faser-Verstärkung

Liu, Jianwen 15 January 2008 (has links)
Zur Erweiterung der Grundlagenkenntnisse für diese beiden bisher wenig genutzten Verstärkungsfasern werden in dieser Arbeit Einzelfaserzugversuche durchgeführt, um den Einfluss der Prüfbedingungen und der Faseroberflächenbehandlungen auf die mechanischen Eigenschaften der Fasern zu charakterisieren. Durch die Analysen der unimodalen und bimodalen Weibullverteilung wird der Zusammenhang zwischen der Faserzugfestigkeit und den kritischen Oberflächendefekten untersucht. Um den Einfluss der Faseroberflächenbehandlungen auf die Oberflächenenergien und Grenzflächenhaftung zu ermitteln, werden in dieser Arbeit der Schlichteauftrag aus wässriger Phase (Silan, Filmbildner), Plasmabehandlungen in verschiedenen Medien, Excimer-UV-Bestrahlungen in Anwesenheit verschiedener Monomeren und eine Säurebehandlung durchgeführt. Zur Charakterisierung der Oberflächentopografie der oberflächenbehandelten Fasern vor und nach dem Einzelfaserauszugversuch wird die Rasterkraftmikroskopie (AFM) verwendet. Der Effekt einer Plasmabehandlung auf die freie Oberflächenenergie der PBO-Fasern und die Grenzflächenscherfestigkeit wird mittels der Kontaktwinkelmessung und der Einzelfaserauszugprüfung untersucht. Um die durch diese Oberflächenmodifizierungen hervorgerufenen Veränderungen der mechanischen Verbundeigenschaften sowie der Faser-Matrix-Haftung zu charakterisieren, werden in dieser Arbeit sowohl endlosfaserverstärkte thermoplastische und duroplastische Unidirektionalverbunde bzw. kurzfaserverstärkte thermoplastische Verbunde als Modellfälle betrachtet, bei denen sowohl die Verstärkungsfasern als auch die Matrix signifikant unterschiedlich sind. Zur Verstärkung werden zwei ausgewählte Fasermaterialien (Basalt- und PBO-Fasern) und als Matrix zwei Thermoplaste (PP und PA6) sowie ein Epoxidharz ausgewählt. Der Einsatz von Commingling-Hybridfäden zur Entwicklung der thermoplastischen Unidirektionalverbunde erfordert Voruntersuchungen zur Lufttexturierung mit verschiedenen Düsen und Auswahl der günstigsten Prozessparameter.
180

The sulfur content and sulfur isotopic composition of Archean basaltic rocks at Matagami, Québec and their relationship to massive sulfides /

Pasitschniak, Anna. January 1982 (has links)
No description available.

Page generated in 0.0385 seconds