Spelling suggestions: "subject:"basket option"" "subject:"gasket option""
1 |
Calculation aspects of the European Rebalanced Basket Option using Monte Carlo methodsVan der Merwe, Carel Johannes 12 1900 (has links)
Thesis (MComm (Statistics and Actuarial Science)--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Life insurance and pension funds offer a wide range of products that are invested in a mix of
assets. These portfolios (II), underlying the products, are rebalanced back to predetermined fixed
proportions on a regular basis. This is done by selling the better performing assets and buying the
worse performing assets. Life insurance or pension fund contracts can offer the client a minimum
payout guarantee on the contract by charging them an extra premium (a). This problem can be
changed to that of the pricing of a put option with underlying . It forms a liability for the insurance
firm, and therefore needs to be managed in terms of risks as well. This can be done by studying the
option’s sensitivities. In this thesis the premium and sensitivities of this put option are calculated,
using different Monte Carlo methods, in order to find the most efficient method.
Using general Monte Carlo methods, a simplistic pricing method is found which is refined by applying
mathematical techniques so that the computational time is reduced significantly. After considering
Antithetic Variables, Control Variates and Latin Hypercube Sampling as variance reduction techniques,
option prices as Control Variates prove to reduce the error of the refined method most
efficiently. This is improved by considering different Quasi-Monte Carlo techniques, namely Halton,
Faure, normal Sobol’ and other randomised Sobol’ sequences. Owen and Faure-Tezuke type
randomised Sobol’ sequences improved the convergence of the estimator the most efficiently. Furthermore,
the best methods between Pathwise Derivatives Estimates and Finite Difference Approximations
for estimating sensitivities of this option are found.
Therefore by using the refined pricing method with option prices as Control Variates together with
Owen and Faure-Tezuke type randomised Sobol’ sequences as a Quasi-Monte Carlo method, more
efficient methods to price this option (compared to simplistic Monte Carlo methods) are obtained.
In addition, more efficient sensitivity estimators are obtained to help manage risks. / AFRIKAANSE OPSOMMING: Lewensversekering en pensioenfondse bied die mark ’n wye reeks produkte wat belê word in ’n
mengsel van bates. Hierdie portefeuljes (II), onderliggend aan die produkte, word op ’n gereelde basis
terug herbalanseer volgens voorafbepaalde vaste proporsies. Dit word gedoen deur bates wat beter
opbrengste gehad het te verkoop, en bates met swakker opbrengste aan te koop. Lewensversekeringof
pensioenfondskontrakte kan ’n kliënt ’n verdere minimum uitbetaling aan die einde van die kontrak
waarborg deur ’n ekstra premie (a) op die kontrak te vra. Die probleem kan verander word
na die prysing van ’n verkoopopsie met onderliggende bate . Hierdie vorm deel van die versekeringsmaatskappy
se laste en moet dus ook bestuur word in terme van sy risiko’s. Dit kan gedoen
word deur die opsie se sensitiwiteite te bestudeer. In hierdie tesis word die premie en sensitiwiteite
van die verkoopopsie met behulp van verskillende Monte Carlo metodes bereken, om sodoende die
effektiefste metode te vind.
Deur die gebruik van algemene Monte Carlo metodes word ’n simplistiese prysingsmetode, wat verfyn
is met behulp van wiskundige tegnieke wat die berekeningstyd wesenlik verminder, gevind. Nadat
Antitetiese Veranderlikes, Kontrole Variate en Latynse Hiperkubus Steekproefneming as variansiereduksietegnieke
oorweeg is, word gevind dat die verfynde metode se fout die effektiefste verminder
met behulp van opsiepryse as Kontrole Variate. Dit word verbeter deur verskillende Quasi-Monte
Carlo tegnieke, naamlik Halton, Faure, normale Sobol’ en ander verewekansigde Sobol’ reekse, te
vergelyk. Die Owen en Faure-Tezuke tipe verewekansigde Sobol’ reeks verbeter die konvergensie van
die beramer die effektiefste. Verder is die beste metode tussen Baanafhanklike Afgeleide Beramers
en Eindige Differensie Benaderings om die sensitiwiteit vir die opsie te bepaal, ook gevind.
Deur dus die verfynde prysingsmetode met opsiepryse as Kontrole Variate, saam met Owen en
Faure-Tezuke tipe verewekansigde Sobol’ reekse as ’n Quasi-Monte Carlo metode te gebruik, word
meer effektiewe metodes om die opsie te prys, gevind (in vergelyking met simplistiese Monte Carlo
metodes). Verder is meer effektiewe sensitiwiteitsberamers as voorheen gevind wat gebruik kan word
om risiko’s te help bestuur.
|
2 |
Processus matriciels : simulation et modélisation de la dépendance en financeAhdida, Abdelkoddousse 01 December 2011 (has links)
La première partie de cette thèse est consacrée à la simulation des équations différentielles stochastiques définies sur le cône des matrices symétriques positives. Nous présentons de nouveaux schémas de discrétisation d'ordre élevé pour ce type d'équations différentielles stochastiques, et étudions leur convergence faible. Nous nous intéressons tout particulièrement au processus de Wishart, souvent utilisé en modélisation financière. Pour ce processus nous proposons à la fois un schéma exact en loi et des discrétisations d'ordre élevé. A ce jour, cette méthode est la seule qui soit utilisable quels que soient les paramètres intervenant dans la définition de ces modèles. Nous montrons, par ailleurs, comment on peut réduire la complexité algorithmique de ces méthodes et nous vérifions les résultats théoriques sur des implémentations numériques. Dans la deuxième partie, nous nous intéressons à des processus à valeurs dans l'espace des matrices de corrélation. Nous proposons une nouvelle classe d'équations différentielles stochastiques définies dans cet espace. Ce modèle peut être considéré comme une extension du modèle Wright-Fisher (ou processus Jacobi) àl'espace des matrice de corrélation. Nous étudions l'existence faible et forte des solutions. Puis, nous explicitons les liens avec les processus de Wishart et les processus de Wright-Fisher multi-allèles. Nous démontrons le caractère ergodique du modèle et donnons des représentations de Girsanov susceptibles d'être employées en finance. En vue d'une utilisation pratique, nous explicitons deux schémas de discrétisation d'ordre élevé. Cette partie se conclut par des résultats numériques illustrant le comportement de la convergence de ces schémas. La dernière partie de cette thèse est consacrée à l'utilisation des ces processus pour des questions de modélisation multi-dimensionnelle en finance. Une question importante de modélisation, aujourd'hui encore difficile à traiter, est l'identification d'un type de modèle permettant de calibrer à la fois le marché des options sur un indice et sur ses composants. Nous proposons, ici, deux types de modèles : l'un à corrélation locale et l'autre à corrélation stochastique. Dans ces deux cas, nous expliquons quelle procédure on doit adopter pour obtenir une bonne calibration des données de marché / After a short introduction (in French) to the multi dimensional modelling for index pricing problems, the first part of the thesis treats the simulation of stochastic differential equations defined on the cone of symmetric positive semi-definite matrices. Indeed, we present several second order discretization schemes associated to a general class of affine processes defined on $posm.$ We study also their weak convergence. We pay a special attention to Wishart processes, which are considered as a particular case of this class and have been frequently used in finance. In this case, we give an exact scheme and a third order discretization one. To the best of our knowledge, this is the first exact sampling of the Wishart distribution without any restrictions on its parameters. Some algorithm are proposed in order to enhance all scheme in term of computation of time. We show numerical illustrations of our convergence and compare it to the theoretical rate. We then focus on other type of processes defined on the correlation matrix space. For this purposes, We propose a new stochastic differential equation defined on $crr.$ We prove the weak and the strong existence of such solutions. These processes are considered as the extension of Wright-Fisher processes (or Jacobi process) on correlation matrices. We shed light on a useful connection with Wishart processes and Wright-Fisher multi-allèles. Moreover, we explicitly present their moments, which enable us to describe the ergodic limit. Other results about Girsanov representations are also given. Finally, in order to use these processes in practice, we propose second order discretization schemes based on two different methods. Numerical experiments are presented to show the convergence. The last part is devoted to multi dimension modelling in finance for baskets and indices pricing. After giving a mathematical analysis of models defined either by the correlation matrix or in the positive semi-definite semi positive one, we ask if we find the adequate structure of correlation models which is able to calibrate both the index options market and the single options market related to each component of this index. For this purpose, we propose two types of modelling, the first uses a local model correlation and the second derives from a pure stochastic correlation model. Moreover, we explain different routines that have been used for improved calibration
|
3 |
[en] PRICING MODEL AND PREMIUM ANALYSIS OF A CALL BASKET OPTION OF CURRENCIES / [pt] MODELO DE PRECIFICAÇÃO E ANÁLISE DO PRÊMIO DE UMA OPÇÃO DE COMPRA DE UMA CESTA DE MOEDASJACQUELINE BAPTISTA SIQUEIRA 23 May 2018 (has links)
[pt] Muitas empresas apresentam exposições, como dívidas emitidas em outras moedas, diferente de sua moeda funcional. As empresas podem se proteger contra a desvalorização de sua moeda funcional através da contratação de instrumentos financeiros para este fim. Os estudos realizados apresentam uma estratégia de tratamento a exposição de um grupo de moedas com um custo menor quando comparado a estratégias de tratamento de cada exposição de forma individual. A estratégia apresentada é a utilização de opção de uma cesta de moedas, embora a cesta possa ser de vários tipos, como cesta de índices e ações. O objetivo do trabalho é realizar um estudo da precificação de uma alternativa de proteção à exposição a um conjunto de moedas. Os resultados obtidos com a estratégia proposta são comparados com a alternativa de se realizar proteção com uma opção de compra simples, bem como é apresentado um estudo de evolução do prêmio da opção dada correlação entre as moedas que compõem a cesta de opções. Os resultados obtidos do modelo de precificação mostram que a opções para uma cesta de moedas são um instrumento adequado para tratamento de exposição à moedas, pois apresenta um custo menor quando comparado com o custo de opções de compra para cada moeda a que está exposta. / [en] Many companies have exposures, such as debts issued in other currencies that are not their functional currency. Companies can protect themselves against the devaluation of their functional currency by contracting financial instruments for this purpose. The studies carried out present a treatment strategy the exposure of a group of currencies with a lower cost when compared to treatment strategies of each exposure individually. The strategy presented is the use of a basket option of currencies, although the basket can be of several types, such as baskets option of indexes and basket option of stocks. The purpose is to carry out a study of the pricing of an alternative to protect exposure to a set of currencies. The results obtained with the proposed strategy are compared with the alternative of realizing protection with a call vanilla, as well as a study of the evolution of the premium of the option given correlation between the currencies that belong to the basket of options. The results obtained from the pricing model show that the options for a basket of currencies are an appropriate instrument for treatment of currency exposure because it presents a lower cost when compared to the cost of call options for each currency to which it is exposed.
|
4 |
Discrete time methods of pricing Asian optionsDyakopu, Neliswa B. January 2014 (has links)
>Magister Scientiae - MSc / This dissertation studies the computation methods of pricing of Asian options. Asian options are options in which the underlying variable is the average price over a period of time. Because of this, Asian options have a lower volatility and this render them cheaper relative to their European counterparts. Asian options belong to the so-called path-dependent derivatives; they are among the most difficult to price and hedge both analytically and numerically. In practice, it is only discrete Asian options that are traded, however continuous Asian options are used for studying purposes. Several approaches have been proposed in the literature, including Monte Carlo simulations, tree-based methods, Taylor’s expansion, partial differential equations, and analytical ap-
proximations among others. When using partial differential equations for pricing of continuous time Asian options, the high dimensionality is problematic. In this dissertation we focus on the discrete time methods. We start off by explaining the binomial tree method, and our last chapter presents the very exciting and relatively simple method of Tsao and Huang, using Taylor approximations. The main papers that are used in this dissertation are articles by Jan Vecer (2001); LCG Rogers (1995); Eric Benhamou (2001); Gianluca Fusai (2007); Kamizono, Kariya and Nakatsuma (2006) and Tsao and Huang (2007). The author has provided computations, including graphs and tables dispersed over the different chapters, to demonstrate the utility of the methods. We observe various parameters of influence such as correlation, volatility, strike, etc. A further contribution by the author of this dissertation is, in particular,
in Chapter 5, in the presentation of the work of Tsao et al. Here we have provided slightly more detailed explanations and again some further computational tables.
|
5 |
Combinatorial and price efficient optimization of the underlying assets in basket options / Kombinatorisk och priseffektiv optimering av antalet underliggande tillgångar i aktiekorgarAlexis, Sara January 2017 (has links)
The purpose of this thesis is to develop an optimization model that chooses the optimal and price efficient combination of underlying assets for a equally weighted basket option. To obtain a price efficient combination of underlying assets a function that calculates the basket option price is needed, for further use in an optimization model. The closed-form basket option pricing is a great challenge, due to the lack of a distribution describing the augmented stochastic price process. Many types of approaches to price an basket option has been made. In this thesis, an analytical approximation of the basket option price has been used, where the analytical approximation aims to develop a method to describe the augmented price process. The approximation is done by moment matching, i.e. matching the first two moments of the real distribution of the basket option with an lognormal distribution. The obtained price function is adjusted and used as the objective function in the optimization model. Furthermore, since the goal is to obtain en equally weighted basket option, the appropriate class of optimization models to use are binary optimization problems. This kind of optimization model is in general hard to solve - especially for increasing dimensions. Three different continuous relaxations of the binary problem has been applied in order to obtain continuous problems, that are easier to solve. The results shows that the purpose of this thesis is fulfilled when formulating and solving the optimization problem - both as an binary and continuous nonlinear optimization model. Moreover, the results from a Monte Carlo simulation for correlated stochastic processes shows that the moment matching technique with a lognormal distribution is a good approximation for pricing a basket option. / Syftet med detta examensarbete är att utveckla ett optimeringsverktyg som väljer den optimala och priseffektiva kombinationen av underliggande tillgångar för en likaviktad aktiekorg. För att kunna hitta en priseffektiv kombination av underliggande tillgångar behöver man finna en passande funktion som bestämmer priset på en likaviktad aktiekorg. Prissättningen av dessa typer av optioner är en stor utmaning. Detta är på grund av bristen av en sannolikhetsfördelning som kan beskriva den utökade och korrelerade stokastiska prisprocess som uppstår för en aktiekorg. Många typer av prissättningar har undersökts och tillämpats. I detta arbete har en analytisk approximation använts för att kunna beskriva den underliggande pris processen approximativt. Uppskattningen görs genom att matcha de tvåförsta momenten av den verkliga fördelningen med motsvarande moment för en lognormal fördelning. Den erhållna prisfunktionen justeras och används som målfunktionen i optimeringsmodellen. Binära ickelinjära optimeringsproblem är i allmänhet svåra att lösa - särskilt för ökande dimensioner av variabler. Tre olika kontinuerliga omformuleringar av det binära optimeringsproblemet har gjorts för att erhålla kontinuerliga problem som är lättare att lösa. Resultaten visar att en optimal och priseffektiv kombination av underliggande aktier är möjlig att hitta genom att formulera ett optimeringsproblem - både som en binär och kontinuerlig ickelinjär optimeringsmodell. Dessutom visar resultaten från en Monte Carlo-simulering, i detta fall för korrelerade stokastiska processer, att moment matching metoden utförd med en lognormal fördelning är en god approximation för prissättningen av aktiekorgar.
|
6 |
Mortality linked derivatives and their pricingBahl, Raj Kumari January 2017 (has links)
This thesis addresses the absence of explicit pricing formulae and the complexity of proposed models (incomplete markets framework) in the area of mortality risk management requiring the application of advanced techniques from the realm of Financial Mathematics and Actuarial Science. In fact, this is a multi-essay dissertation contributing in the direction of designing and pricing mortality-linked derivatives and offering the state of art solutions to manage longevity risk. The first essay investigates the valuation of Catastrophic Mortality Bonds and, in particular, the case of the Swiss Re Mortality Bond 2003 as a primary example of this class of assets. This bond was the first Catastrophic Mortality Bond to be launched in the market and encapsulates the behaviour of a well-defined mortality index to generate payoffs for bondholders. Pricing this type of bond is a challenging task and no closed form solution exists in the literature. In my approach, we adapt the payoff of such a bond in terms of the payoff of an Asian put option and present a new methodology to derive model-independent bounds for catastrophic mortality bonds by exploiting the theory of comonotonicity. While managing catastrophic mortality risk is an upheaval task for insurers and re-insurers, the insurance industry is facing an even bigger challenge - the challenge of coping up with increased life expectancy. The recent years have witnessed unprecedented changes in mortality rate. As a result academicians and practitioners have started treating mortality in a stochastic manner. Moreover, the assumption of independence between mortality and interest rate has now been replaced by the observation that there is indeed a correlation between the two rates. Therefore, my second essay studies valuation of Guaranteed Annuity Options (GAOs) under the most generalized modeling framework where both interest rate and mortality risk are stochastic and correlated. Pricing these types of options in the correlated environment is an arduous task and a closed form solution is non-existent. In my approach, I employ the use of doubly stochastic stopping times to incorporate the randomness about the time of death and employ a suitable change of measure to facilitate the valuation of survival benefit, there by adapting the payoff of the GAO in terms of the payoff of a basket call option. I then derive general price bounds for GAOs by employing the theory of comonotonicity and the Rogers-Shi (Rogers and Shi, 1995) approach. Moreover, I suggest some `model-robust' tight bounds based on the moment generating function (m.g.f.) and characteristic function (c.f.) under the affine set up. The strength of these bounds is their computational speed which makes them indispensable for annuity providers who rely heavily on Monte Carlo simulations to calculate the fair market value of Guaranteed Annuity Options. In fact, sans Monte Carlo, the academic literature does not offer any solution for the pricing of the GAOs. I illustrate the performance of the bounds for a variety of affine processes governing the evolution of mortality and the interest rate by comparing them with the benchmark Monte Carlo estimates. Through my work, I have been able to express the payoffs of two well known modern mortality products in terms of payoffs of financial derivatives, there by filling the gaps in the literature and offering state of art techniques for pricing of these sophisticated instruments.
|
7 |
Pricing a basket option when volatility is capped using affinejump-diffusion modelsKrebs, Daniel January 2013 (has links)
This thesis considers the price and characteristics of an exotic option called the Volatility-Cap-Target-Level(VCTL) option. The payoff function is a simple European option style but the underlying value is a dynamic portfolio which is comprised of two components: A risky asset and a non-risky asset. The non-risky asset is a bond and the risky asset can be a fund or an index related to any asset category such as equities, commodities, real estate, etc. The main purpose of using a dynamic portfolio is to keep the realized volatility of the portfolio under control and preferably below a certain maximum level, denoted as the Volatility-Cap-Target-Level (VCTL). This is attained by a variable allocation between the risky asset and the non-risky asset during the maturity of the VCTL-option. The allocation is reviewed and if necessary adjusted every 15th day. Adjustment depends entirely upon the realized historical volatility of the risky asset. Moreover, it is assumed that the risky asset is governed by a certain group of stochastic differential equations called affine jump-diffusion models. All models will be calibrated using out-of-the money European call options based on the Deutsche-Aktien-Index(DAX). The numerical implementation of the portfolio diffusions and the use of Monte Carlo methods will result in different VCTL-option prices. Thus, to price a nonstandard product and to comply with good risk management, it is advocated that the financial institution use several research models such as the SVSJ- and the Seppmodel in addition to the Black-Scholes model. Keywords: Exotic option, basket option, risk management, greeks, affine jumpdiffusions, the Black-Scholes model, the Heston model, Bates model with lognormal jumps, the Bates model with log-asymmetric double exponential jumps, the Stochastic-Volatility-Simultaneous-Jumps(SVSJ)-model, the Sepp-model.
|
8 |
Construction and Evaluation of Basket Options using the Binomial Option Pricing Model / Konstruktion och Evaluering av Korgoptioner med BinomialmodellenNordström, Robin, Tabari, Sepand January 2021 (has links)
Hedge funds use a variety of different financial instruments in order to try to achieve over-average returns without taking on excessive risk - options being one of the most common of these instruments. Basket options is a type of option that is written on several underlying assets that can be used to hedge risky positions. This project has been working together with the hedge fund Proxy P to develop software to construct basket options and to analyze their use as a hedging strategy. Construction of basket options can be performed through the use of several different mathematical models. These models range from complex continuous models, such as Monte Carlo simulations, to simple discrete models, such as the binomial option pricing model. In this project, the binomial option pricing model was chosen as the main tool to determine some quantities of basket options. It can conveniently handle both European and American options, independently of whether these are put or call options. The quantities calculated, the option price and option Delta, are dependent on the volatility and the initial price of the underlying. When evaluating the basket option there are two key assumptions that need to be studied. These key assumptions are if the weights and the initial price of the underlying change with each time step, or if they are held constant. It was found that both the weights and the price of the underlying should change dynamically with each time step. Furthermore, in order to evaluate the performance of the basket options used as a hedge, the project used historical data and measured how the options neutralized negative movements in the underlying. This was done through the use of the option Delta and the hedge ratio. What could be concluded was that the put basket option can serve as a relatively inexpensive hedge and minimize the risk on the downside in a sufficient matter. / Hedgefonder använder en rad olika finansiella instrument, där optioner är ett av de mest förekommande av dessa, för att generera överavkastning utan att ta överdriven risk. Korgoptioner, eller basket options som de kallas på engelska, är en typ av option som är skriven på flertalet underliggande tillgångar som kan användas för att gardera finansiella institutioner mot risk. Det här projektet har samarbetat med den svenska hedgefonden Proxy P för att utveckla programvara för att konstruera korgoptioner och evaluera hur de kan användas som hedgingstrategi. Konstrueringen av dessa korgoptioner kan göras med hjälp av flertalet matematiska mo-deller. Allt ifrån komplexa kontinuerliga modeller, som Monte Carlo simulering, till mer simpla diskreta modeller, som binomialprissättningsmodellen, kan användas. I detta projekt kommer binomialprissättningsmodellen användas för att beräkna relevanta kvantiteter gällande korgoptioner. Modellen kan hantera både optioner av den amerikanska och euro-peiska varianten, samt sälj- och köpoptioner. Relevanta kvantiteterna som benämnts gäller optionspriset samt optionens Delta, där dessa beror på marknadsvolatiliteten och startpriset på den underliggande tillgången. Vid utvärdering av korgoptionen behöver två antaganden tas i beaktande: att vikterna och initiala priset på underliggande ändras vid varje tidssteg eller om de hålls konstanta. Slutsatsen kunde dras att både vikterna och den underliggande tillgångens pris skulle vara dynamiska och därmed ändras vid varje tidssteg. För att kunna utvärdera hur väl korgoptioner fungerade som en hedge använde projektet historisk data för att utvärdera hur optionen neutraliserade negativa rörelser i den under-liggande tillgången. Denna utvärdering gjordes med avseende på Deltat hos optionen och hedgekvoten. Slutsatsen som kunde dras var att korgoptioner är ett relativt billigt sätt att hedga och minimera nedsidans risk.
|
Page generated in 0.0794 seconds