• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lead contamination and bioavailability in two industrial towns in the Czech Republic

Rieuwerts, John Simon January 1998 (has links)
No description available.
2

Establishing a battery manufacturing base in Sweden : Evaluating and analyzing the factors behind locational strategy of battery manufacturers / Etablering av en bas för batteritillverkning i Sverige : Utvärdering och analys av faktorerna bakom batteritillverkares lokaliseringsstrategi

Helenefors, Gustav, Jakobsson, Samuel, Uldin, Marcus January 2022 (has links)
Background: In the last few years, many of the risks of operating in a global supply chain or an offshore manufacturing strategy have become evident as they have been disrupted by accidents, pandemics, and conflicts. Multiple parties in global trade have also increased their talks about autonomy in strategic sectors or production of strategically important components. The theoretical problem of current literature is that there is a lack of research on the strategies of the manufacturing bases that are of strategical importance of nations. Purpose: The purpose of the study is to fill the theoretical gap by studying the factors behind the location decision which battery manufacturers consider when they decide to relocate production. Moreover, the study will explain the opportunities and implications that reallocating the production entails. Method: The approach of the study will be a comparative case based on qualitative data to explore and create an understanding and explanation to the research purpose. The design of the research has been based on and inspired by thematic analysis and the cases has been chosen through a purposeful sampling technique. The main form of data collection of this research will be secondary data. Conclusion: This study is increasing the understanding of reallocating battery manufacturing to Sweden. It adds to the existing literature in the field of IB and OSCM by the discovery of two new factors of opportunities behind locational decision. The first one was seeking municipalities with low permit process complexity in the due diligence process, and the second one was choosing a location that has possibilities for attaining more regional autonomy in material supply, as a strategic internal consideration.
3

Manufacturing & Regional Cost Competitiveness of Commercial Sodium Ion Cells : A bottom-up cost analysis of Lithium and Sodium Ion Battery Storage

Alva, Srujan Kiran January 2023 (has links)
Batteries are increasingly seen as an indispensable element in the rapid progress of the energy transition. With forecasts for global demand set to reach 2 TWh by 2030 and increasing policy support for battery manufacturers, many questions arise on whether the current rapid expansion of battery manufacturing industry is sustainable. Issues regarding the stability of the supply chain and rising energy security concerns has led to an expanded focus on alternate battery technologies. Sodium ion cells are commonly cited as a potential solution to many of the current issues facing the lithium-ion battery industry. With sodium ion cells reaching commercialization, this thesis would like to explore the viability of commercial sodium ion cells through a bottom-up manufacturing and regional cost analysis of Sodium Prussian Blue Analogues and Sodium Layered Oxides. To account for the more qualitative aspects of regional battery manufacturing, the current policy framework and supply chain are briefly explored. To study the current commercial sodium ion cells, the report considers Na0.9[Cu0.22Fe0.30Mn0.48] O2 (Na Oxide) and Na2MnFe(CN)6 (Na PBA) cathode chemistries which are similar to the cells manufactured by HiNa and Novasis Energies respectively. These cells are compared to two of the most common Lithium chemistries on the market, LiFePO4 (LFP) and LiNi0.3Mn0.3Co0.3 (Li NMC111). Various manufacturing scales of the model plant are explored for each chemistry, and the changes in manufacturing costs for the US, China, India, Sweden and Chile are explored. Considering a baseline plant of 1500 MWh/yr, the base case results show that from the cost perspective the sodium ion cells are not too different from that of the lithium-ion cells. The cost of the lithium ion cells NMC111 and LFP (2019 US$) are at 126 $/kWh and 113$/kWh while the Na Oxide and Na PBA cell costs are at 125 $/kWh and 148 $/kWh. While the costs are comparable, the volumetric energy density of the sodium cells is almost half that of their lithium counterparts, which hampers the overall cost advantage from the cheaper materials. Compared to the lithium cells where the cathode and anode are on average the most expensive components, the separator and the hard carbon anode become the most expensive cost components in the sodium ion cells studied. In the regional analysis, China and Chile have the cheapest cell costs for both sodium and lithium, while the US and India are the most expensive within the countries studied with the maximum cost difference in the range of 15 $/kWh. While most countries have differing approaches in terms of policy support, the trend towards domestic sourcing of supplies can clearly be seen in most of the countries studied. The past three years has seen interest in battery manufacturing escalate significantly, with slow policy support in the 2010s from most countries. Chile is a notable exception with a lack of strong policy support. For the manufacturing scale, it was found that the minimum effective scale was 1500 MWh annually. The capital costs for the sodium ion cell plants were 16% more expensive than the lithium cell plants due to increased production rates to meet the same annual production. With cathode thickness, it was found that the Na PBA cell benefited the most with the increase in thickness, as it had the highest CAM capacity. The cost advantages of the sodium ion cells start to materialise when considering the increase in price of materials in 2022. When considering increased metal costs in 2022, the price of the Li NMC and LFP cells increase to around 186 $/kWh, while sodium ion cells don’t display an appreciable change in cost. Furthermore, when considering a higher power rate of 5C, the lithium cells perform poorly with Li NMC increasing to 188 $/kWh and LFP to 148 $/kWh while the sodium cells remain close to their 0.2C costs at 148$/kWh for Na PBA and 127 $/kWh for Na Oxide. / Batterier betraktas i allt högre grad som en oumbärlig komponent i den snabba utvecklingen av energiomställningen. Med prognoser som visar att den globala efterfrågan kommer att nå 2 TWh år 2030, och med ökat stöd från myndigheter till batteritillverkare, uppstår många frågor om huruvida den nuvarande snabba expansionen av batteritillverkningsindustrin är hållbar. Frågor om stabiliteten i leveranskedjan och ökad oro för energisäkerheten har lett till ett ökat fokus på alternativa batteriteknologier. Natriumjonceller nämns ofta som en potentiell lösning på många av de aktuella problemen som litiumjonbatteriindustrin står inför. Denna avhandling syftar till att undersöka livsdugligheten hos kommersiella natriumjonceller genom en bottom-up-tillverkning och regional kostnadsanalys av natriumpreussiska blåanaloger och natriumskiktade oxider. För att belysa de mer kvalitativa aspekterna av regional batteritillverkning undersöks även den nuvarande politiska ramen och leveranskedjan kortfattat. För att studera de nuvarande kommersiella natriumjoncellerna överväger rapporten katodkemin Na0.9[Cu0.22Fe0.30Mn0.48]O2 (Na Oxide) och Na2MnFe(CN)6 (Na PBA), som liknar celler som tillverkas av HiNa respektive Novasis Energies. Dessa celler jämförs med två av de vanligaste litiumkemikalierna på marknaden, LiFePO4 (LFP) och LiNi0.3Mn0.3Co0.3 (Li NMC111). Olika tillverkningsskalor i modellfabriker undersöks för varje kemikalie, och förändringarna i tillverkningskostnaderna i USA, Kina, Indien, Sverige och Chile analyseras. Med en baslinjeanläggning på 1500 MWh/år visar basfallsresultaten att natriumjoncellerna inte skiljer sig alltför mycket kostnadsmässigt från litiumjoncellerna. Kostnaden för litiumjoncellerna NMC111 och LFP är 126 $/kWh respektive 113 $/kWh, medan kostnaderna för Na Oxide och Na PBA-celler ligger på 125 $/kWh respektive 148 $/kWh. Trots att kostnaderna är jämförbara är natriumcellernas volymetriska energitäthet nästan hälften så stor som deras litiumequivalenter, vilket minskar den totala kostnadsfördelen av de billigare materialen. Jämfört med litiumcellerna, där katoden och anoden i genomsnitt utgör de dyraste komponenterna, är separatorn och hårdkolanoden de dyraste kostnadskomponenterna i de undersökta natriumjoncellerna. I den regionala analysen har Kina och Chile de lägsta cellkostnaderna för både natrium och litium, medan USA och Indien är dyrast bland de undersökta länderna med en maximal kostnadsskillnad på 15 $/kWh. Även om de flesta länder har olika tillvägagångssätt när det gäller politiskt stöd, kan trenden mot inhemska inköp av material tydligt ses i de flesta av de undersökta länderna. Under de senaste tre åren har intresset för batteritillverkning ökat betydligt, efter ett långsamt politiskt stöd under 2010-talet från de flesta länder. Chile utgör ett anmärkningsvärt undantag med brist på starkt politiskt stöd. Vid tillverkningsskalan fann man att den lägsta effektiva skalan var 1500 MWh årligen. Kapitalkostnaderna för natriumjoncellsanläggningar var 16 % dyrare än för litiumjoncellsanläggningar på grund av ökade produktionshastigheter för att uppnå samma årsproduktion. När det gäller katoddjocklek så gynnades Na PBA-cellen mest av en ökning i tjocklek, eftersom den hade den högsta CAM-kapaciteten. Fördelarna med natriumjonceller börjar realiseras när man beaktar prisökningen på material år 2022. Vid en ökning av metallkostnaderna 2022 ökar priset på Li NMC- och LFP-cellerna till cirka 186 $/kWh, medan kostnaden för natriumjoncellerna inte uppvisar någon märkbar förändring. Dessutom, vid en högre effekt på 5C, presterar litiumcellerna dåligt med en kostnad på 188 $/kWh för Li NMC och 148 $/kWh för LFP, medan kostnaden för natriumcellerna förblir nära deras kostnader vid 0,2C, nämligen 148 $/kWh för Na PBA och 127 $/kWh för Na Oxide.
4

ENERGY REDUCTION IN AUTOMOTIVE PAINT SHOPS A REVIEW OF HYBRID/ELECTRIC VEHICLE BATTERY MANUFACTURING

Arenas Guerrero, Claudia Patricia 01 January 2010 (has links)
Automotive industry is facing fundamental challenges due to the rapid depletion of fossil fuels, energy saving and environmental concerns. The need of sustainable energy development has motivated the research of energy reduction and renewable energy sources. Efficient use of energy in vehicle manufacturing is demanded, as well as an alternative energy source to replace gasoline powered engines. In this thesis, we introduce a case study at an automotive paint shop, where the largest amount of energy consumption of an automotive assembly plant takes place. Additionally, we present a summary of recent advances in the area of hybrid and electrical vehicles battery manufacturing, review commonly used battery technologies, their manufacturing processes, and related recycling and environmental issues. Our study shows that energy consumption in paint shops can be reduced substantially by selecting the appropriate repair capacity, reducing the number of repainted jobs and consuming less material and energy. Also, it is seen that considerable effort needs to be devoted to the development of batteries for hybrid and electric vehicles in the near future, which will make this area challenging and research opportunities promising.
5

Equipment Management and its Role in EV-Powertrain Manufacturing

Madappa Venkatesh, Rohan, Yi, Sean January 2023 (has links)
No description available.
6

State of the Art inom batteriproduktion / State of the Art in battery production

Monteza, Diego, Sakelis, Vitalijs January 2022 (has links)
Denna State of The Art rapport handlar om den senaste elbilsbatteritekniken, batteritillverkning för elbilar, och miljöpåverkan av batterier. Inom elbils batteriteknik förklaras hur dagens batterityper ser ut när det kommer till den kemiska sammansättningen och förklaring på varför de batterityperna är aktuella nu och vilka batterityper som troligtvis blir aktuella i framtiden. Därefter förklaras hur ett elbilsbatteri är uppbyggt, hur komponenterna ser ut idag och hur de kan vidareutvecklas i framtiden. Vidare så skrivs det om hur dagens batterimoduler fungerar. Ytterligare skrivs det om de vanligaste battericellerna som är de cylindriska, prismatiska och påsformade celltyperna. Deras fördelar och nackdelar tas upp. Slutligen finns det en kortfattad beskrivning på vilka dagens största batteritillverkare är och hur marknaden ser ut idag och i framtiden specifikt i Europa. Två företag har analyserats, VDMA och Northvolt. VDMA tillverkar cylindriska, prismatiska och pås batterier. Northvolt tillverkar prismatiska och cylindriska batterier, dessutom tillverkar de batteripack som kan installeras i elbilar. Deras tillverkningstekniker har slagits samman och bildat 5 tillverknings faser. Resultatet ger oss en helhetssyn på hur det går till att tillverka först ett batteri och sedan använda batteriet för att skapa ett batteripack som kan användas i ett elfordon. Vidare så har 3 olika förbättringar inom batteriproduktion tagits upp som resulterat med effektivisering inom produktionssystemet. Slutligen när det kommer till miljöpåverkan av batteritillverkning så anses det vara energikrävande och miljöskadligt. Återvinningsprocessen är komplex och problematisk. Det är billigare att använda nytt råvarumaterial än att använda återvunnen material. Dagens infrastruktur är inte redo för elektrifiering. / This State of The Art report is about the latest electric car battery technology, battery manufacturing for electric cars, and the environmental impact of batteries. In electric car battery technology, it is explained what the current battery types look like when it comes to the chemical composition and an explanation of why those battery types are relevant now and which battery types will probably be relevant in the future. It then explains how an electric car battery is built, what the components look like today and how they can be further developed in the future. Furthermore, it is written about how today's battery modules work. It is also written about the most common battery cells, which are the cylindrical, prismatic and pouch shaped cell types. Their advantages and disadvantages are addressed. Finally, there is a brief description of who today's largest battery manufacturers are and what the market looks like today and in the future specifically in Europe. Two companies have been analyzed, VDMA and Northvolt. VDMA manufactures cylindrical, prismatic and pouch batteries. Northvolt manufactures prismatic and cylindrical batteries, and also manufactures battery packs that can be installed in electric cars. Their manufacturing techniques have merged to form 5 manufacturing phases. The result gives us a holistic view of how it is possible to first manufacture a battery and then use the battery to create a battery pack that can be used in an electric vehicle. Furthermore, 3 different improvements in battery production have been taken up which have resulted in efficiency improvements in the production system. Finally, when it comes to the environmental impact of battery manufacturing, it is considered energy intensive and environmentally harmful. The recycling process is complex and problematic. It is cheaper to use new raw material than to use recycled material. Today's infrastructure is not ready for electrification.

Page generated in 0.1043 seconds