Spelling suggestions: "subject:"bayes"" "subject:"hayes""
11 |
Physiologically based pharmacokinetic modeling in risk assessment : development of Bayesian population methods /Jonsson, Fredrik, January 1900 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2001. / Härtill 5 uppsatser.
|
12 |
Three Essays on Bayesian Nonparametric Modeling in MicroeconometricsJochmann, Markus. January 2008 (has links)
Konstanz, Univ., Diss., 2006.
|
13 |
Darstellung der Machbarkeit einer Prädiktion des Verhaltens von Verkehrsteilnehmern durch Kombination von Zeitnetzen mit probabilistischen MethodenHammelmann, Jürgen. January 2001 (has links)
Stuttgart, Univ., Diplomarb., 2001.
|
14 |
Einsatz probabilistischer Verfahren zur Entscheidungsfindung im RoboCupRüdenauer, Jörg. January 2003 (has links)
Stuttgart, Univ., Diplomarb., 2003.
|
15 |
Bayesian factor analysisEuverman, Teije Jan. Vermulst, Adrianus Antonius. January 1983 (has links)
Thesis--Groningen. / In Periodical Room.
|
16 |
Bayesian inference in empirical finance /Verhofen, Michael. January 2006 (has links)
Thesis (doctoral)--Universität St. Gallen, 2006.
|
17 |
Modelos bayesianos para estimar risco relativo em desfechos binários e politômicosLeotti, Vanessa Bielefeldt January 2013 (has links)
A razão de chances (RC) e o risco relativo (RR) são medidas de associação utilizadas em epidemiologia. Existem discussões sobre desvantagens da RC como medida de associação em delineamentos prospectivos, e que nestes o RR deve ser utilizado, especialmente se o desfecho for comum (>10%). No caso de desfechos binários e dados independentes, alternativas ao uso da RC estimada pela regressão logística foram propostas. Uma delas é o modelo log-binomial e outra é a regressão de Poisson com variância robusta. Tais modelos permitem identificar fatores associados ao desfecho e estimar a probabilidade do evento para cada unidade observacional. Em relação à estimação das probabilidades, a regressão de Poisson robusta tem como desvantagem a possibilidade de estimar probabilidades maiores que 1. Isto não ocorre com o modelo log-binomial, entretanto, o mesmo pode enfrentar problemas de convergência. Alguns autores recomendam que o modelo log-binomial seja a primeira escolha de análise, deixando-se o uso da regressão de Poisson robusta apenas para as situações em que o primeiro método não converge. Em 2010, o uso de metodologia bayesiana foi proposta como maneira de solucionar os problemas de convergência e simulações comparando com as abordagens anteriores foram procedidas. No entanto, tais simulações tiveram limitações: preditores categóricos não foram considerados; apenas um tamanho de amostra foi avaliado; apenas a mediana e o intervalo de credibilidade de caudas iguais foram considerados na abordagem bayesiana, quando existem outras opções; e a principal delas, as medidas comparativas foram calculadas para os coeficientes do modelo e não para o RR. Nesta tese, tais limitações foram superadas, e encontrou-se outro estimador bayesiano para o RR, a moda, com menor viés e erro quadrático médio em geral. Os modelos citados anteriormente são apropriados para análise de observações independentes, entretanto há casos em que esta suposição não é válida, como em ensaios clínicos randomizados em cluster ou modelagem multinível. Apenas cinco trabalhos foram encontrados com propostas de como estimar o RR para esses casos. Quando o interesse é a estimação do RR com desfechos politômicos, apenas dois trabalhos apresentaram sugestões. Conseguiu-se neste trabalho estender a metodologia bayesiana proposta para desfechos binários e dados independentes para lidar com essas duas situações. / The odds ratio (OR) and relative risk (RR) are measures of association used in epidemiology. There are discussions about disadvantages of the OR as an measure of association in prospective studies, and that instead of this measure, the RR should be used, especially if the outcome is common (>10%). In the case of binary outcomes and independent data, alternatives to OR estimated by logistic regression were proposed. One is the log-binomial model and other is the Poisson regression with robust variance. Such models allow to identify factors associated with outcome and to estimate the probability of the event for each observational unit. Regarding the estimation of probabilities, the robust Poisson regression has the disadvantage of possibly estimating probabilities greater than 1. This does not occur with the logbinomial model; however, the same can face convergence problems. Some authors recommend the log-binomial model as the first choice of analysis, leaving the use of robust Poisson regression just for situations where the first model does not converge. In 2010, the use of Bayesian methodology was proposed as a way to solve the convergence problems and simulations comparing with the previous approaches were proceeded. However, such simulations had limitations: categorical predictors were not considered; only one sample size was evaluated; only the median and equal tail credible interval were addressed in the Bayesian approach, when there are other options; and the main one, the comparative measures were calculated only for the model coefficients and not for the RR. In this thesis, these limitations have been overcome, and another Bayesian estimator of the RR, the mode, presented less bias and mean squared error in general. The models mentioned above are suitable for analysis of independent observations; however there are cases where this assumption is not valid, as in clustered randomized trials or multilevel modeling. Only five papers were found with proposals of how to estimate the RR in these cases. When the interest is on estimation of the RR with polytomous outcomes, only two studies presented suggestions. In this work, the Bayesian methodology proposed for binary outcomes and independent data was extended to deal with these two situations.
|
18 |
Modelos bayesianos para estimar risco relativo em desfechos binários e politômicosLeotti, Vanessa Bielefeldt January 2013 (has links)
A razão de chances (RC) e o risco relativo (RR) são medidas de associação utilizadas em epidemiologia. Existem discussões sobre desvantagens da RC como medida de associação em delineamentos prospectivos, e que nestes o RR deve ser utilizado, especialmente se o desfecho for comum (>10%). No caso de desfechos binários e dados independentes, alternativas ao uso da RC estimada pela regressão logística foram propostas. Uma delas é o modelo log-binomial e outra é a regressão de Poisson com variância robusta. Tais modelos permitem identificar fatores associados ao desfecho e estimar a probabilidade do evento para cada unidade observacional. Em relação à estimação das probabilidades, a regressão de Poisson robusta tem como desvantagem a possibilidade de estimar probabilidades maiores que 1. Isto não ocorre com o modelo log-binomial, entretanto, o mesmo pode enfrentar problemas de convergência. Alguns autores recomendam que o modelo log-binomial seja a primeira escolha de análise, deixando-se o uso da regressão de Poisson robusta apenas para as situações em que o primeiro método não converge. Em 2010, o uso de metodologia bayesiana foi proposta como maneira de solucionar os problemas de convergência e simulações comparando com as abordagens anteriores foram procedidas. No entanto, tais simulações tiveram limitações: preditores categóricos não foram considerados; apenas um tamanho de amostra foi avaliado; apenas a mediana e o intervalo de credibilidade de caudas iguais foram considerados na abordagem bayesiana, quando existem outras opções; e a principal delas, as medidas comparativas foram calculadas para os coeficientes do modelo e não para o RR. Nesta tese, tais limitações foram superadas, e encontrou-se outro estimador bayesiano para o RR, a moda, com menor viés e erro quadrático médio em geral. Os modelos citados anteriormente são apropriados para análise de observações independentes, entretanto há casos em que esta suposição não é válida, como em ensaios clínicos randomizados em cluster ou modelagem multinível. Apenas cinco trabalhos foram encontrados com propostas de como estimar o RR para esses casos. Quando o interesse é a estimação do RR com desfechos politômicos, apenas dois trabalhos apresentaram sugestões. Conseguiu-se neste trabalho estender a metodologia bayesiana proposta para desfechos binários e dados independentes para lidar com essas duas situações. / The odds ratio (OR) and relative risk (RR) are measures of association used in epidemiology. There are discussions about disadvantages of the OR as an measure of association in prospective studies, and that instead of this measure, the RR should be used, especially if the outcome is common (>10%). In the case of binary outcomes and independent data, alternatives to OR estimated by logistic regression were proposed. One is the log-binomial model and other is the Poisson regression with robust variance. Such models allow to identify factors associated with outcome and to estimate the probability of the event for each observational unit. Regarding the estimation of probabilities, the robust Poisson regression has the disadvantage of possibly estimating probabilities greater than 1. This does not occur with the logbinomial model; however, the same can face convergence problems. Some authors recommend the log-binomial model as the first choice of analysis, leaving the use of robust Poisson regression just for situations where the first model does not converge. In 2010, the use of Bayesian methodology was proposed as a way to solve the convergence problems and simulations comparing with the previous approaches were proceeded. However, such simulations had limitations: categorical predictors were not considered; only one sample size was evaluated; only the median and equal tail credible interval were addressed in the Bayesian approach, when there are other options; and the main one, the comparative measures were calculated only for the model coefficients and not for the RR. In this thesis, these limitations have been overcome, and another Bayesian estimator of the RR, the mode, presented less bias and mean squared error in general. The models mentioned above are suitable for analysis of independent observations; however there are cases where this assumption is not valid, as in clustered randomized trials or multilevel modeling. Only five papers were found with proposals of how to estimate the RR in these cases. When the interest is on estimation of the RR with polytomous outcomes, only two studies presented suggestions. In this work, the Bayesian methodology proposed for binary outcomes and independent data was extended to deal with these two situations.
|
19 |
Modelos bayesianos para estimar risco relativo em desfechos binários e politômicosLeotti, Vanessa Bielefeldt January 2013 (has links)
A razão de chances (RC) e o risco relativo (RR) são medidas de associação utilizadas em epidemiologia. Existem discussões sobre desvantagens da RC como medida de associação em delineamentos prospectivos, e que nestes o RR deve ser utilizado, especialmente se o desfecho for comum (>10%). No caso de desfechos binários e dados independentes, alternativas ao uso da RC estimada pela regressão logística foram propostas. Uma delas é o modelo log-binomial e outra é a regressão de Poisson com variância robusta. Tais modelos permitem identificar fatores associados ao desfecho e estimar a probabilidade do evento para cada unidade observacional. Em relação à estimação das probabilidades, a regressão de Poisson robusta tem como desvantagem a possibilidade de estimar probabilidades maiores que 1. Isto não ocorre com o modelo log-binomial, entretanto, o mesmo pode enfrentar problemas de convergência. Alguns autores recomendam que o modelo log-binomial seja a primeira escolha de análise, deixando-se o uso da regressão de Poisson robusta apenas para as situações em que o primeiro método não converge. Em 2010, o uso de metodologia bayesiana foi proposta como maneira de solucionar os problemas de convergência e simulações comparando com as abordagens anteriores foram procedidas. No entanto, tais simulações tiveram limitações: preditores categóricos não foram considerados; apenas um tamanho de amostra foi avaliado; apenas a mediana e o intervalo de credibilidade de caudas iguais foram considerados na abordagem bayesiana, quando existem outras opções; e a principal delas, as medidas comparativas foram calculadas para os coeficientes do modelo e não para o RR. Nesta tese, tais limitações foram superadas, e encontrou-se outro estimador bayesiano para o RR, a moda, com menor viés e erro quadrático médio em geral. Os modelos citados anteriormente são apropriados para análise de observações independentes, entretanto há casos em que esta suposição não é válida, como em ensaios clínicos randomizados em cluster ou modelagem multinível. Apenas cinco trabalhos foram encontrados com propostas de como estimar o RR para esses casos. Quando o interesse é a estimação do RR com desfechos politômicos, apenas dois trabalhos apresentaram sugestões. Conseguiu-se neste trabalho estender a metodologia bayesiana proposta para desfechos binários e dados independentes para lidar com essas duas situações. / The odds ratio (OR) and relative risk (RR) are measures of association used in epidemiology. There are discussions about disadvantages of the OR as an measure of association in prospective studies, and that instead of this measure, the RR should be used, especially if the outcome is common (>10%). In the case of binary outcomes and independent data, alternatives to OR estimated by logistic regression were proposed. One is the log-binomial model and other is the Poisson regression with robust variance. Such models allow to identify factors associated with outcome and to estimate the probability of the event for each observational unit. Regarding the estimation of probabilities, the robust Poisson regression has the disadvantage of possibly estimating probabilities greater than 1. This does not occur with the logbinomial model; however, the same can face convergence problems. Some authors recommend the log-binomial model as the first choice of analysis, leaving the use of robust Poisson regression just for situations where the first model does not converge. In 2010, the use of Bayesian methodology was proposed as a way to solve the convergence problems and simulations comparing with the previous approaches were proceeded. However, such simulations had limitations: categorical predictors were not considered; only one sample size was evaluated; only the median and equal tail credible interval were addressed in the Bayesian approach, when there are other options; and the main one, the comparative measures were calculated only for the model coefficients and not for the RR. In this thesis, these limitations have been overcome, and another Bayesian estimator of the RR, the mode, presented less bias and mean squared error in general. The models mentioned above are suitable for analysis of independent observations; however there are cases where this assumption is not valid, as in clustered randomized trials or multilevel modeling. Only five papers were found with proposals of how to estimate the RR in these cases. When the interest is on estimation of the RR with polytomous outcomes, only two studies presented suggestions. In this work, the Bayesian methodology proposed for binary outcomes and independent data was extended to deal with these two situations.
|
20 |
Priors PAC-Bayes avec covariance pleine qui dépendent de la distribution sourceAlain, Mathieu 09 November 2022 (has links)
L'ambition du présent mémoire est la présentation d'un ensemble de principes appelés la théorie PAC-Bayes. L'approche offre des garanties de type PAC aux algorithmes d'apprentissage bayésiens généralisés. Le mémoire traite essentiellement des cas où la distribution prior dépend des données. Le mémoire est divisé en trois chapitres. Le premier chapitre détaille les notions de base en apprentissage automatique. Il s'agit d'idées nécessaires à la bonne compréhension des deux chapitres subséquents. Le deuxième chapitre présente et discute de la théorie PAC-Bayes. Finalement, le troisième chapitre aborde l'idée d'une garantie PAC-Bayes où le prior dépend des données. Il y a deux contributions principales. La première contribution est une formulation analytique du risque empirique espéré pour les distributions elliptiques. La seconde contribution est une extension du travail de Parrado-Hernández et al. (34). En effet, il s'agit du développement d'une garantie PAC-Bayes avec un prior espérance non sphérique. / The ambition of this thesis is to present a set of principles called the PAC-Bayes theory. The approach provides PAC-like guarantees for generalised Bayesian learning algorithms. This thesis deals essentially with cases where the prior distribution is data dependent. The paper is divided into three chapters. The first chapter details the core concepts of machine learning. These are ideas that are necessary for a good understanding of the two subsequent chapters. The second chapter presents and discusses the PAC-Bayes theory. Finally, the third chapter addresses the idea of a PAC-Bayes guarantee where the prior depend on the data. There are two main contributions. The first contribution is an analytical formulation of the empirical expected risk for elliptical distributions. The second contribution is an extension of the work of Parrado-Hernández et al. (34). Indeed, it is the development of a PAC-Bayes guarantee with a non-spherical prior expectation.
|
Page generated in 0.037 seconds