Spelling suggestions: "subject:"risco relativos"" "subject:"disco relativos""
1 |
Modelos bayesianos para estimar risco relativo em desfechos binários e politômicosLeotti, Vanessa Bielefeldt January 2013 (has links)
A razão de chances (RC) e o risco relativo (RR) são medidas de associação utilizadas em epidemiologia. Existem discussões sobre desvantagens da RC como medida de associação em delineamentos prospectivos, e que nestes o RR deve ser utilizado, especialmente se o desfecho for comum (>10%). No caso de desfechos binários e dados independentes, alternativas ao uso da RC estimada pela regressão logística foram propostas. Uma delas é o modelo log-binomial e outra é a regressão de Poisson com variância robusta. Tais modelos permitem identificar fatores associados ao desfecho e estimar a probabilidade do evento para cada unidade observacional. Em relação à estimação das probabilidades, a regressão de Poisson robusta tem como desvantagem a possibilidade de estimar probabilidades maiores que 1. Isto não ocorre com o modelo log-binomial, entretanto, o mesmo pode enfrentar problemas de convergência. Alguns autores recomendam que o modelo log-binomial seja a primeira escolha de análise, deixando-se o uso da regressão de Poisson robusta apenas para as situações em que o primeiro método não converge. Em 2010, o uso de metodologia bayesiana foi proposta como maneira de solucionar os problemas de convergência e simulações comparando com as abordagens anteriores foram procedidas. No entanto, tais simulações tiveram limitações: preditores categóricos não foram considerados; apenas um tamanho de amostra foi avaliado; apenas a mediana e o intervalo de credibilidade de caudas iguais foram considerados na abordagem bayesiana, quando existem outras opções; e a principal delas, as medidas comparativas foram calculadas para os coeficientes do modelo e não para o RR. Nesta tese, tais limitações foram superadas, e encontrou-se outro estimador bayesiano para o RR, a moda, com menor viés e erro quadrático médio em geral. Os modelos citados anteriormente são apropriados para análise de observações independentes, entretanto há casos em que esta suposição não é válida, como em ensaios clínicos randomizados em cluster ou modelagem multinível. Apenas cinco trabalhos foram encontrados com propostas de como estimar o RR para esses casos. Quando o interesse é a estimação do RR com desfechos politômicos, apenas dois trabalhos apresentaram sugestões. Conseguiu-se neste trabalho estender a metodologia bayesiana proposta para desfechos binários e dados independentes para lidar com essas duas situações. / The odds ratio (OR) and relative risk (RR) are measures of association used in epidemiology. There are discussions about disadvantages of the OR as an measure of association in prospective studies, and that instead of this measure, the RR should be used, especially if the outcome is common (>10%). In the case of binary outcomes and independent data, alternatives to OR estimated by logistic regression were proposed. One is the log-binomial model and other is the Poisson regression with robust variance. Such models allow to identify factors associated with outcome and to estimate the probability of the event for each observational unit. Regarding the estimation of probabilities, the robust Poisson regression has the disadvantage of possibly estimating probabilities greater than 1. This does not occur with the logbinomial model; however, the same can face convergence problems. Some authors recommend the log-binomial model as the first choice of analysis, leaving the use of robust Poisson regression just for situations where the first model does not converge. In 2010, the use of Bayesian methodology was proposed as a way to solve the convergence problems and simulations comparing with the previous approaches were proceeded. However, such simulations had limitations: categorical predictors were not considered; only one sample size was evaluated; only the median and equal tail credible interval were addressed in the Bayesian approach, when there are other options; and the main one, the comparative measures were calculated only for the model coefficients and not for the RR. In this thesis, these limitations have been overcome, and another Bayesian estimator of the RR, the mode, presented less bias and mean squared error in general. The models mentioned above are suitable for analysis of independent observations; however there are cases where this assumption is not valid, as in clustered randomized trials or multilevel modeling. Only five papers were found with proposals of how to estimate the RR in these cases. When the interest is on estimation of the RR with polytomous outcomes, only two studies presented suggestions. In this work, the Bayesian methodology proposed for binary outcomes and independent data was extended to deal with these two situations.
|
2 |
Modelos bayesianos para estimar risco relativo em desfechos binários e politômicosLeotti, Vanessa Bielefeldt January 2013 (has links)
A razão de chances (RC) e o risco relativo (RR) são medidas de associação utilizadas em epidemiologia. Existem discussões sobre desvantagens da RC como medida de associação em delineamentos prospectivos, e que nestes o RR deve ser utilizado, especialmente se o desfecho for comum (>10%). No caso de desfechos binários e dados independentes, alternativas ao uso da RC estimada pela regressão logística foram propostas. Uma delas é o modelo log-binomial e outra é a regressão de Poisson com variância robusta. Tais modelos permitem identificar fatores associados ao desfecho e estimar a probabilidade do evento para cada unidade observacional. Em relação à estimação das probabilidades, a regressão de Poisson robusta tem como desvantagem a possibilidade de estimar probabilidades maiores que 1. Isto não ocorre com o modelo log-binomial, entretanto, o mesmo pode enfrentar problemas de convergência. Alguns autores recomendam que o modelo log-binomial seja a primeira escolha de análise, deixando-se o uso da regressão de Poisson robusta apenas para as situações em que o primeiro método não converge. Em 2010, o uso de metodologia bayesiana foi proposta como maneira de solucionar os problemas de convergência e simulações comparando com as abordagens anteriores foram procedidas. No entanto, tais simulações tiveram limitações: preditores categóricos não foram considerados; apenas um tamanho de amostra foi avaliado; apenas a mediana e o intervalo de credibilidade de caudas iguais foram considerados na abordagem bayesiana, quando existem outras opções; e a principal delas, as medidas comparativas foram calculadas para os coeficientes do modelo e não para o RR. Nesta tese, tais limitações foram superadas, e encontrou-se outro estimador bayesiano para o RR, a moda, com menor viés e erro quadrático médio em geral. Os modelos citados anteriormente são apropriados para análise de observações independentes, entretanto há casos em que esta suposição não é válida, como em ensaios clínicos randomizados em cluster ou modelagem multinível. Apenas cinco trabalhos foram encontrados com propostas de como estimar o RR para esses casos. Quando o interesse é a estimação do RR com desfechos politômicos, apenas dois trabalhos apresentaram sugestões. Conseguiu-se neste trabalho estender a metodologia bayesiana proposta para desfechos binários e dados independentes para lidar com essas duas situações. / The odds ratio (OR) and relative risk (RR) are measures of association used in epidemiology. There are discussions about disadvantages of the OR as an measure of association in prospective studies, and that instead of this measure, the RR should be used, especially if the outcome is common (>10%). In the case of binary outcomes and independent data, alternatives to OR estimated by logistic regression were proposed. One is the log-binomial model and other is the Poisson regression with robust variance. Such models allow to identify factors associated with outcome and to estimate the probability of the event for each observational unit. Regarding the estimation of probabilities, the robust Poisson regression has the disadvantage of possibly estimating probabilities greater than 1. This does not occur with the logbinomial model; however, the same can face convergence problems. Some authors recommend the log-binomial model as the first choice of analysis, leaving the use of robust Poisson regression just for situations where the first model does not converge. In 2010, the use of Bayesian methodology was proposed as a way to solve the convergence problems and simulations comparing with the previous approaches were proceeded. However, such simulations had limitations: categorical predictors were not considered; only one sample size was evaluated; only the median and equal tail credible interval were addressed in the Bayesian approach, when there are other options; and the main one, the comparative measures were calculated only for the model coefficients and not for the RR. In this thesis, these limitations have been overcome, and another Bayesian estimator of the RR, the mode, presented less bias and mean squared error in general. The models mentioned above are suitable for analysis of independent observations; however there are cases where this assumption is not valid, as in clustered randomized trials or multilevel modeling. Only five papers were found with proposals of how to estimate the RR in these cases. When the interest is on estimation of the RR with polytomous outcomes, only two studies presented suggestions. In this work, the Bayesian methodology proposed for binary outcomes and independent data was extended to deal with these two situations.
|
3 |
Modelos bayesianos para estimar risco relativo em desfechos binários e politômicosLeotti, Vanessa Bielefeldt January 2013 (has links)
A razão de chances (RC) e o risco relativo (RR) são medidas de associação utilizadas em epidemiologia. Existem discussões sobre desvantagens da RC como medida de associação em delineamentos prospectivos, e que nestes o RR deve ser utilizado, especialmente se o desfecho for comum (>10%). No caso de desfechos binários e dados independentes, alternativas ao uso da RC estimada pela regressão logística foram propostas. Uma delas é o modelo log-binomial e outra é a regressão de Poisson com variância robusta. Tais modelos permitem identificar fatores associados ao desfecho e estimar a probabilidade do evento para cada unidade observacional. Em relação à estimação das probabilidades, a regressão de Poisson robusta tem como desvantagem a possibilidade de estimar probabilidades maiores que 1. Isto não ocorre com o modelo log-binomial, entretanto, o mesmo pode enfrentar problemas de convergência. Alguns autores recomendam que o modelo log-binomial seja a primeira escolha de análise, deixando-se o uso da regressão de Poisson robusta apenas para as situações em que o primeiro método não converge. Em 2010, o uso de metodologia bayesiana foi proposta como maneira de solucionar os problemas de convergência e simulações comparando com as abordagens anteriores foram procedidas. No entanto, tais simulações tiveram limitações: preditores categóricos não foram considerados; apenas um tamanho de amostra foi avaliado; apenas a mediana e o intervalo de credibilidade de caudas iguais foram considerados na abordagem bayesiana, quando existem outras opções; e a principal delas, as medidas comparativas foram calculadas para os coeficientes do modelo e não para o RR. Nesta tese, tais limitações foram superadas, e encontrou-se outro estimador bayesiano para o RR, a moda, com menor viés e erro quadrático médio em geral. Os modelos citados anteriormente são apropriados para análise de observações independentes, entretanto há casos em que esta suposição não é válida, como em ensaios clínicos randomizados em cluster ou modelagem multinível. Apenas cinco trabalhos foram encontrados com propostas de como estimar o RR para esses casos. Quando o interesse é a estimação do RR com desfechos politômicos, apenas dois trabalhos apresentaram sugestões. Conseguiu-se neste trabalho estender a metodologia bayesiana proposta para desfechos binários e dados independentes para lidar com essas duas situações. / The odds ratio (OR) and relative risk (RR) are measures of association used in epidemiology. There are discussions about disadvantages of the OR as an measure of association in prospective studies, and that instead of this measure, the RR should be used, especially if the outcome is common (>10%). In the case of binary outcomes and independent data, alternatives to OR estimated by logistic regression were proposed. One is the log-binomial model and other is the Poisson regression with robust variance. Such models allow to identify factors associated with outcome and to estimate the probability of the event for each observational unit. Regarding the estimation of probabilities, the robust Poisson regression has the disadvantage of possibly estimating probabilities greater than 1. This does not occur with the logbinomial model; however, the same can face convergence problems. Some authors recommend the log-binomial model as the first choice of analysis, leaving the use of robust Poisson regression just for situations where the first model does not converge. In 2010, the use of Bayesian methodology was proposed as a way to solve the convergence problems and simulations comparing with the previous approaches were proceeded. However, such simulations had limitations: categorical predictors were not considered; only one sample size was evaluated; only the median and equal tail credible interval were addressed in the Bayesian approach, when there are other options; and the main one, the comparative measures were calculated only for the model coefficients and not for the RR. In this thesis, these limitations have been overcome, and another Bayesian estimator of the RR, the mode, presented less bias and mean squared error in general. The models mentioned above are suitable for analysis of independent observations; however there are cases where this assumption is not valid, as in clustered randomized trials or multilevel modeling. Only five papers were found with proposals of how to estimate the RR in these cases. When the interest is on estimation of the RR with polytomous outcomes, only two studies presented suggestions. In this work, the Bayesian methodology proposed for binary outcomes and independent data was extended to deal with these two situations.
|
4 |
Estimação de risco relativo e razão de prevalência com desfecho binárioPapaléo, Cecília de Leão Martins January 2009 (has links)
O risco relativo (RR) e a razão de prevalência (RP) são medidas de associação que visam mensurar a relação de um desfecho binário e variáveis de exposição em estudos com delineamento coorte e transversal, respectivamente. Nos casos em que há variáveis de confusão ou um fator de exposição contínuo, a associação pode ser estimada através de métodos específicos, tais como regressão de Poisson, regressão log-binomial, análise estratificada e conversão de Zhang e Yu. A regressão logística tem sido extensivamente usada para estimar a razão de chances (RC), a qual muitas vezes é interpretada como RR ou RP. Quando a incidência/prevalência do desfecho não é < 10% a RC produz estimativas de RC próximas à RP e RR. Porém, se o desfecho for comum (³ 10%), a RC superestima a RP e o RR. Este estudo tem como objetivo apresentar uma revisão em 10 revistas da área médica, para verificar a constância da utilização dos métodos que estimam a RP ou RR e a interpretação da RC como RP e RR. Foram selecionados um total de 333 artigos do ano de 2007 e 381 artigos de 2008 com desfecho binário. Entre os estudos de coorte e transversal, 76,2% aplicaram regressão logística e destes, 18,1% em 2007 e 14,7% em 2008 interpretaram a RC como RR ou RP No caso desses estudos, seria aconselhável utilizar um modelo que estime diretamente essas medidas para evitar interpretação equivocadas. Uma vez que a regressão de Poisson com variância robusta e a regressão log-binomial são disponibilizadas em diversos pacotes estatísticos, não há mais motivos para não utilizálos. / Relative Risk (RR) and Prevalence Ratio (PR) are association measures that aim to measure respectively the relation between an outcome binary and an exhibition variables in study of cohort and cross-sectional design. In the cases that there are confounding variables or a factor of e continuous exhibition, the association can be estimated by specific methods such as Poisson Regression, log-binomial regression stratified analyses and conversions proposed by Zhang & Yu. The logistic regression has been widely used to estimate Odds Ratio (OR) which, several times, is interpreted as RR or PR. When the incidence/prevalence of the outcome is not < 10% it produces estimation of OR similar to PR and RR. However, if the outcome is common (³ 10%) the OR overestimates the PR and the RR. However, this study has the objective to present a review in 10 journals of Medicine to verify the constancy of the application of methods that estimate the PR or RR and the interpretation of OR as PR and RR. It was selected a sum of 333 articles from 2007 and 381 articles from 2008 that estimated OR to be RR or PR with binary outcome. Between cohort and cross-sectional studies, 76.2% applied logistic regression and, among these, 18.1% in 2007 and 14.7% in 2008 interpreted OR as PR and RR In these studies should be used a model that estimate directly in order to avoid misinterpretations. Once the Poisson regression with robust variance and the log-binominal regression are available from many statistic packages, there is no reason to not use them.
|
5 |
Estimação de risco relativo e razão de prevalência com desfecho binárioPapaléo, Cecília de Leão Martins January 2009 (has links)
O risco relativo (RR) e a razão de prevalência (RP) são medidas de associação que visam mensurar a relação de um desfecho binário e variáveis de exposição em estudos com delineamento coorte e transversal, respectivamente. Nos casos em que há variáveis de confusão ou um fator de exposição contínuo, a associação pode ser estimada através de métodos específicos, tais como regressão de Poisson, regressão log-binomial, análise estratificada e conversão de Zhang e Yu. A regressão logística tem sido extensivamente usada para estimar a razão de chances (RC), a qual muitas vezes é interpretada como RR ou RP. Quando a incidência/prevalência do desfecho não é < 10% a RC produz estimativas de RC próximas à RP e RR. Porém, se o desfecho for comum (³ 10%), a RC superestima a RP e o RR. Este estudo tem como objetivo apresentar uma revisão em 10 revistas da área médica, para verificar a constância da utilização dos métodos que estimam a RP ou RR e a interpretação da RC como RP e RR. Foram selecionados um total de 333 artigos do ano de 2007 e 381 artigos de 2008 com desfecho binário. Entre os estudos de coorte e transversal, 76,2% aplicaram regressão logística e destes, 18,1% em 2007 e 14,7% em 2008 interpretaram a RC como RR ou RP No caso desses estudos, seria aconselhável utilizar um modelo que estime diretamente essas medidas para evitar interpretação equivocadas. Uma vez que a regressão de Poisson com variância robusta e a regressão log-binomial são disponibilizadas em diversos pacotes estatísticos, não há mais motivos para não utilizálos. / Relative Risk (RR) and Prevalence Ratio (PR) are association measures that aim to measure respectively the relation between an outcome binary and an exhibition variables in study of cohort and cross-sectional design. In the cases that there are confounding variables or a factor of e continuous exhibition, the association can be estimated by specific methods such as Poisson Regression, log-binomial regression stratified analyses and conversions proposed by Zhang & Yu. The logistic regression has been widely used to estimate Odds Ratio (OR) which, several times, is interpreted as RR or PR. When the incidence/prevalence of the outcome is not < 10% it produces estimation of OR similar to PR and RR. However, if the outcome is common (³ 10%) the OR overestimates the PR and the RR. However, this study has the objective to present a review in 10 journals of Medicine to verify the constancy of the application of methods that estimate the PR or RR and the interpretation of OR as PR and RR. It was selected a sum of 333 articles from 2007 and 381 articles from 2008 that estimated OR to be RR or PR with binary outcome. Between cohort and cross-sectional studies, 76.2% applied logistic regression and, among these, 18.1% in 2007 and 14.7% in 2008 interpreted OR as PR and RR In these studies should be used a model that estimate directly in order to avoid misinterpretations. Once the Poisson regression with robust variance and the log-binominal regression are available from many statistic packages, there is no reason to not use them.
|
6 |
Estimação de risco relativo e razão de prevalência com desfecho binárioPapaléo, Cecília de Leão Martins January 2009 (has links)
O risco relativo (RR) e a razão de prevalência (RP) são medidas de associação que visam mensurar a relação de um desfecho binário e variáveis de exposição em estudos com delineamento coorte e transversal, respectivamente. Nos casos em que há variáveis de confusão ou um fator de exposição contínuo, a associação pode ser estimada através de métodos específicos, tais como regressão de Poisson, regressão log-binomial, análise estratificada e conversão de Zhang e Yu. A regressão logística tem sido extensivamente usada para estimar a razão de chances (RC), a qual muitas vezes é interpretada como RR ou RP. Quando a incidência/prevalência do desfecho não é < 10% a RC produz estimativas de RC próximas à RP e RR. Porém, se o desfecho for comum (³ 10%), a RC superestima a RP e o RR. Este estudo tem como objetivo apresentar uma revisão em 10 revistas da área médica, para verificar a constância da utilização dos métodos que estimam a RP ou RR e a interpretação da RC como RP e RR. Foram selecionados um total de 333 artigos do ano de 2007 e 381 artigos de 2008 com desfecho binário. Entre os estudos de coorte e transversal, 76,2% aplicaram regressão logística e destes, 18,1% em 2007 e 14,7% em 2008 interpretaram a RC como RR ou RP No caso desses estudos, seria aconselhável utilizar um modelo que estime diretamente essas medidas para evitar interpretação equivocadas. Uma vez que a regressão de Poisson com variância robusta e a regressão log-binomial são disponibilizadas em diversos pacotes estatísticos, não há mais motivos para não utilizálos. / Relative Risk (RR) and Prevalence Ratio (PR) are association measures that aim to measure respectively the relation between an outcome binary and an exhibition variables in study of cohort and cross-sectional design. In the cases that there are confounding variables or a factor of e continuous exhibition, the association can be estimated by specific methods such as Poisson Regression, log-binomial regression stratified analyses and conversions proposed by Zhang & Yu. The logistic regression has been widely used to estimate Odds Ratio (OR) which, several times, is interpreted as RR or PR. When the incidence/prevalence of the outcome is not < 10% it produces estimation of OR similar to PR and RR. However, if the outcome is common (³ 10%) the OR overestimates the PR and the RR. However, this study has the objective to present a review in 10 journals of Medicine to verify the constancy of the application of methods that estimate the PR or RR and the interpretation of OR as PR and RR. It was selected a sum of 333 articles from 2007 and 381 articles from 2008 that estimated OR to be RR or PR with binary outcome. Between cohort and cross-sectional studies, 76.2% applied logistic regression and, among these, 18.1% in 2007 and 14.7% in 2008 interpreted OR as PR and RR In these studies should be used a model that estimate directly in order to avoid misinterpretations. Once the Poisson regression with robust variance and the log-binominal regression are available from many statistic packages, there is no reason to not use them.
|
7 |
Risco de desenvolvimento de câncer sólido e sua relação com as classes de estabilidade atmosférica de pasquill-gifford em cenários RDDBulhosa, Valquiria Miranda, Instituto de Engenharia Nuclear 04 1900 (has links)
Submitted by Almir Azevedo (barbio1313@gmail.com) on 2018-05-14T13:55:55Z
No. of bitstreams: 1
dissertação mestrado ien 2018 Valquiria Miranda Bulhosa.pdf: 1966225 bytes, checksum: 03595cf85c781214ac9c2ce0be1a7300 (MD5) / Made available in DSpace on 2018-05-14T13:55:56Z (GMT). No. of bitstreams: 1
dissertação mestrado ien 2018 Valquiria Miranda Bulhosa.pdf: 1966225 bytes, checksum: 03595cf85c781214ac9c2ce0be1a7300 (MD5)
Previous issue date: 2018-04 / A liberação de material radioativo para o meio ambiente pode levar a sérias consequências que incluem o risco de indução de câncer na população afetada. Este trabalho pretende estudar a influência das classes de estabilidade atmosféricas de Pasquill-Gilfford sobre as consequências de um evento RDD simulado com relação ao risco de desenvolvimento de câncer sólido na população exposta. Utiliza-se o software HotSpot health Physics Code para a simulação do cenário radiológico que permite estimar as doses recebidas pelos indivíduos expostos e a contaminação ambiental no local do evento. O código do HotSpot utiliza o modelo gaussiano para simular a dispersão do material radiológico na atmosfera. De forma conservativa, gera dados para avaliar a contaminação de uma área de interesse. Esses dados permitem conhecer a Dose Equivalente Efetiva Total (TEDE), que corresponde à dose combinada de todas as vias de exposição (externa e interna). A dose estimada foi utilizada como dados de entrada para o modelo bioestatístico desenvolvido pela Radiation Effects Research Foundation (RERF) para estimar o risco de desenvolvimento de morbidade relacionável ao evento. A equação do modelo estimam o risco de desenvolver câncer sólido. Os dados do HotSpot permitiram efetuar o cálculo das áreas afetadas, doses em cada área, bem como estimativa de risco relativo (RR) de câncer sólido para a população afetada, levando em consideração idade e sexo e sua possível relação com as classes de estabilidade atmosférica. Essas estimativas podem ser um bom recurso para uma primeira avaliação de tal cenário, levando em consideração os limites de dose recomendados para abrigo e evacuação e, consequentemente, um suporte de decisão valioso para o evento radiológico em andamento. / The release of radioactive material into the environment can lead to serious consequences that include the risk of cancer induction in the affected population. This work intends to study the influence of the Pasquill-Gilfford atmospheric stability classes on the consequences of a simulated RDD event with respect to the risk of developing solid cancer in the exposed population. The HotSpot health Physics Code software was used for the simulation of the radiological scenario that allows to estimate the doses received by exposed individuals and the environmental contamination at the event site. The HotSpot code uses the Gaussian model to simulate the dispersion of radiological material in the atmosphere. Conservatively, it generates data to evaluate the contamination of an area of interest. These data allow to know the Total Effective Equivalent Dose (TEDE), which corresponds to the combined dose of all exposure routes (external and internal). The estimated dose was used as input data for the biostatistical model developed by the Research Foundation on Radiation Effects (RERF) to estimate the risk of the related morbidity development. The model equation estimate the risk of developing solid cancer. The data from HotSpot enabled the calculation of the affected areas, doses in each area, as well as relative risk (RR) of solid cancer estimation for the affected population, taking into account age and sex and its possible relation with the classes of atmospheric stability. These estimates can be a good resource for a first evaluation of such a scenario, accounting for the recommended dose limits for shelter and evacuation and, consequently, a valuable decision support for the ongoing radiological event.
|
8 |
Risco de desenvolvimento de câncer sólido e sua relação com as classes de estabilidade atmosférica de pasquill-gifford em cenários RDDBulhosa, Valquiria Miranda, Instituto de Engenharia Nuclear 04 1900 (has links)
Submitted by Almir Azevedo (barbio1313@gmail.com) on 2018-06-07T14:18:40Z
No. of bitstreams: 1
dissertação mestrado ien 2018 Valquiria Miranda Bulhosa.pdf: 1966225 bytes, checksum: 03595cf85c781214ac9c2ce0be1a7300 (MD5) / Made available in DSpace on 2018-06-07T14:18:40Z (GMT). No. of bitstreams: 1
dissertação mestrado ien 2018 Valquiria Miranda Bulhosa.pdf: 1966225 bytes, checksum: 03595cf85c781214ac9c2ce0be1a7300 (MD5)
Previous issue date: 2018-04 / A liberação de material radioativo para o meio ambiente pode levar a sérias consequências que incluem o risco de indução de câncer na população afetada. Este trabalho pretende estudar a influência das classes de estabilidade atmosféricas de Pasquill-Gilfford sobre as consequências de um evento RDD simulado com relação ao risco de desenvolvimento de câncer sólido na população exposta. Utiliza-se o software HotSpot health Physics Code para a simulação do cenário radiológico que permite estimar as doses recebidas pelos indivíduos expostos e a contaminação ambiental no local do evento. O código do HotSpot utiliza o modelo gaussiano para simular a dispersão do material radiológico na atmosfera. De forma conservativa, gera dados para avaliar a contaminação de uma área de interesse. Esses dados permitem conhecer a Dose Equivalente Efetiva Total (TEDE), que corresponde à dose combinada de todas as vias de exposição (externa e interna). A dose estimada foi utilizada como dados de entrada para o modelo bioestatístico desenvolvido pela Radiation Effects Research Foundation (RERF) para estimar o risco de desenvolvimento de morbidade relacionável ao evento. A equação do modelo estimam o risco de desenvolver câncer sólido. Os dados do HotSpot permitiram efetuar o cálculo das áreas afetadas, doses em cada área, bem como estimativa de risco relativo (RR) de câncer sólido para a população afetada, levando em consideração idade e sexo e sua possível relação com as classes de estabilidade atmosférica. Essas estimativas podem ser um bom recurso para uma primeira avaliação de tal cenário, levando em consideração os limites de dose recomendados para abrigo e evacuação e, consequentemente, um suporte de decisão valioso para o evento radiológico em andamento. / The release of radioactive material into the environment can lead to serious consequences that include the risk of cancer induction in the affected population. This work intends to study the influence of the Pasquill-Gilfford atmospheric stability classes on the consequences of a simulated RDD event with respect to the risk of developing solid cancer in the exposed population. The HotSpot health Physics Code software was used for the simulation of the radiological scenario that allows to estimate the doses received by exposed individuals and the environmental contamination at the event site. The HotSpot code uses the Gaussian model to simulate the dispersion of radiological material in the atmosphere. Conservatively, it generates data to evaluate the contamination of an area of interest. These data allow to know the Total Effective Equivalent Dose (TEDE), which corresponds to the combined dose of all exposure routes (external and internal). The estimated dose was used as input data for the biostatistical model developed by the Research Foundation on Radiation Effects (RERF) to estimate the risk of the related morbidity development. The model equation estimate the risk of developing solid cancer. The data from HotSpot enabled the calculation of the affected areas, doses in each area, as well as relative risk (RR) of solid cancer estimation for the affected population, taking into account age and sex and its possible relation with the classes of atmospheric stability. These estimates can be a good resource for a first evaluation of such a scenario, accounting for the recommended dose limits for shelter and evacuation and, consequently, a valuable decision support for the ongoing radiological event.
|
9 |
Aspectos epidemiológicos de risco associados à prevalência de Leishmaniose Visceral Canina no município de Piacatu. /Rodrigues, Tamiris Fagundes January 2018 (has links)
Orientador: Tereza Cristina Cardoso da Silva / Coorientadora: Katia Denise Saraiva Bresciani / Banca: Ana Carolina Borsanelli / Banca: Andréa Fontes Garcia / Resumo: Leishmaniose visceral é uma doença infecciosa, de potencial zoonótico, negligenciada e um sério problema de saúde pública em muitas partes do mundo. Dada à importância epidemiológica, a pesquisa teve como objetivo identificar soroprevalência, distribuição espacial e os fatores de risco relacionados à ocorrência de casos de leishmaniose visceral canina (LVC) no município de Piacatu. Foram analisados dados de inquérito censitário canino, com coleta de amostras de 833 animais, com posterior mapeamento dos casos positivos e aplicação de questionário epidemiológico casa a casa em locais de ocorrência de LVC. Baseado nos dados da análise soro- epidemiológica e espacial observou-se que ocorreram associações significativas entre fatores de risco e prevalência de LVC. Medidas de controle da LV necessitam ser intensificadas e direcionadas ao controle de vetores com identificação de flebótomos infectados, manejo ambiental e avaliação do real potencial de transmissão de gatos e animais considerados sorologicamente negativos. / Abstract: Visceral leishmaniasis is an infectious disease of zoonotic potential, neglected and a serious public health problem in many parts of the world. Given the epidemiological importance, the research aimed to identify seroprevalence, spatial distribution and risk factors related to the occurrence of cases of canine visceral leismaniasis (LVC) in the city of Piacatu. Data from a canine census survey were analyzed, with samples collected from 833 animals, with subsequent mapping of the positive cases and application of an epidemiological questionnaire at places with LVC occurrence. Based on data from the seroepidemiological and spatial analysis it was observed that there were significant associations between risk factors and prevalence of LVC. Control measures of LV need to be intensified and directed to the control of vectors with identification of infected sandflies, environmental management and evaluation of the real transmission potential of cats and animals considered serologically negative. / Mestre
|
10 |
Influência das variáveis climáticas em casos de dengue nas cidades da Baixada Santista (sudeste do Brasil) e Cingapura(sudeste asiático) / Influence of climatic variables in dengue cases in the cities of Baixada Santista (southeastern Brazil) and Singapore (Southeast Asia)Sousa, Edna Pinto Pereira de 01 June 2012 (has links)
Neste estudo, baseado na análise de séries temporais para um período de 8 anos, correlacionou-se os casos de dengue com as variáveis climáticas das cidades da Baixada Santista (sudeste brasileiro) e de Cingapura (sudeste asiático). O estudo foi feito com o uso de um modelo de regressão de Poisson (MRP), que considera os casos de dengue como a variável dependente e as variáveis climáticas: precipitação, temperatura (máxima e mínima) e umidade relativa (máxima e mínima) como as variáveis independentes. Também foi utilizada a Análise de Componentes Principais (ACP) para escolher as variáveis que influenciam no aumento do número de casos de dengue nas cidades estudadas. A CP1 (componente principal 1) foi representada pelas temperaturas (máxima e mínima) e a precipitação e a CP2 (componente principal 2) pela umidade relativa (máxima e mínima). Calculou-se o acréscimo dos novos casos de dengue e o risco relativo de ocorrência da doença por influência de cada uma das variáveis climáticas. Na Baixada Santista, os maiores valores de precipitação e temperatura ocorrem nos meses de dezembro e janeiro (verão) e o aumento dos casos de dengue ocorre nos meses de março a maio (outono). Para Cingapura, a diminuição da precipitação e o aumento da temperatura ocorrem nos meses de março a maio (pré-monção de sudoeste), e, portanto, observa-se o aumento dos casos de dengue nos meses de junho a outubro (monção de sudoeste). Os resultados foram: em Cingapura, para 2oC a 10oC de variação na temperatura (máxima e mínima), houve um aumento médio dos casos de dengue de 22,2% a 184,6% (máxima) e de 26,1% a 230,3% (mínima). O risco relativo médio foi de 1,2% a 2,9% e de 1,3% a 3,3%, respectivamente. Para precipitação, a variação de 5mm a 55mm, houve o aumento dos casos de dengue de 5,6% a 83,2%, sendo e o risco relativo médio foi de 1,06% a 1,83%. A umidade relativa após a análise de correlação foi descartada no uso do modelo de regressão de Poisson por apresentar uma correlação muito baixa. Para a Baixada Santista, a variação da temperatura de 2oC a 10oC apresentou um acréscimo médio nos casos de dengue de 19,6% a 154,4% (máxima) e de 18,2% a 145,4% (mínima). O risco relativo médio foi de 1,20% a 2,54% e de 1,18% a 2,45%, respectivamente. A variação da precipitação de 5mm a 55mm apresentou um aumento dos casos de dengue de 3,92% a 53,10%. A umidade relativa mínima variando de 2% a 10%, o acréscimo dos casos de dengue foi 7,7% a 49,4%, sendo que o risco relativo foi de 1,08% a 1,49%. Assim, após várias análises, a temperatura mínima foi um dos preditores para ocorrência do aumento dos casos de dengue em Cingapura, sendo que há uma influência bem particular da precipitação, na qual, atua significativamente no período seco (pré-monção de sudoeste). Enquanto que na Baixada Santista as influências mais significativas foram da temperatura (máxima e mínima) e precipitação, que desenvolvem conjuntamente um bom cenário de atuação do vetor no período do outono / In this study, based on time series analysis for a period of eight years, correlated dengue cases with climatic variables in the cities of Santos (southeastern Brazil) and Singapore (Southeast Asia). The study was done using a Poisson regression model (PRM), which considers the cases of dengue as the dependent variable and climatic variables: precipitation, temperature (maximum and minimum) and relative humidity (maximum and minimum) as the independent variables. Also we used the Principal Component Analysis (PCA) to select the variables that influence the increase in the number of dengue cases in the cities studied. The PC1 (principal component 1) was represented by the temperatures (maximum and minimum) and precipitation and the PC2 (principal component 2) the relative humidity (maximum and minimum). We calculated the addition of new dengue cases and relative risk of disease influenced by each variable climate. In Baixada Santista, the highest values of precipitation and temperature occur in the months of December and January (summer) and the increase in dengue cases occur in the months from March to May (autumn). For Singapore, the decrease in precipitation and temperature increase occurring in the months March to May (southwest inter-monsoon) and hence there is an increase of dengue cases in the months from June to October (southwest monsoon). The results were in Singapore for 2oC to 10oC change in temperature (maximum and minimum), there was an average increase of dengue cases from 22.2% to 184.6% (maximum) and 26.1% at 230 3% (minimum). The average relative risk was 1.2% to 2.9% and 1.3% to 3.3%, respectively. For precipitation, the range of 5mm to 55mm, there was an increase of dengue cases from 5.6% to 83.2%, with and average relative risk was 1.06% to 1.83%. The relative humidity after the correlation analysis was discarded in the use of Poisson regression model for presenting a very low correlation. For Baixada Santista, the variation of temperature of 2oC to 10oC showed an average increase in the dengue cases from 19.6% to 154.4% (maximum) and 18.2% to 145.4% (minimum). The average relative risk is 1.20% to 2.54% and 1.18% to 2.45%, respectively. The variation in the precipitation of 5mm to 55mm showed an increase in dengue cases from 3.92% to 53.10%. The minimum relative humidity ranging from 2% to 10%, the increase of dengue cases was 7.7% to 49.4%, and the relative risk was 1.08% to 1.49%. Thus, after several analyzes, the minimum temperature was one of the predictors for the occurrence of the increase of dengue cases in Singapore, and there is a very particular influence of the precipitation, in which it acts significantly in the dry season (southwest inter-monsoon). While in Baixada Santista were the most significant influences of temperature (maximum and minimum) and precipitation, which jointly develop a good field of action of the vector in the autumn
|
Page generated in 0.0984 seconds