Spelling suggestions: "subject:"bayesian deep 1earning"" "subject:"bayesian deep c1earning""
1 |
Quantifying uncertainty in structural condition with Bayesian deep learning : A study on the Z-24 bridge benchmark / Kvantifiering av osäkerhet i strukturella tillstånd med Bayesiansk djupinlärningAsgrimsson, David Steinar January 2019 (has links)
A machine learning approach to damage detection is presented for a bridge structural health monitoring system, validated on the renowned Z-24 bridge benchmark dataset where a sensor instrumented, threespan bridge was realistically damaged in stages. A Bayesian autoencoder neural network is trained to reconstruct raw sensor data sequences, with uncertainty bounds in prediction. The reconstruction error is then compared with a healthy-state error distribution and the sequence determined to come from a healthy state or not. Several realistic damage stages were successfully detected, making this a viable approach in a data-based monitoring system of an operational bridge. This is a fully operational, machine learning based bridge damage detection system, that is learned directly from raw sensor data. / En maskininlärningsmetod för strukturell skadedetektering av broar presenteras. Metoden valideras på det kända referensdataset Z-24, där en sensor-instrumenterad trespannsbro stegvist skadats. Ett Bayesianskt neuralt nätverk med autoenkoders tränas till att rekonstruera råa sensordatasekvenser, med osäkerhetsgränser i förutsägningen. Rekonstrueringsavvikelsen jämförs med avvikelsesfördelningen i oskadat tillstånd och sekvensen bedöms att komma från ett skadad eller icke skadat tillstånd. Flera realistiska stegvisa skadetillstånd upptäcktes, vilket gör metoden användbar i ett databaserat skadedetektionssystem för en bro i full storlek. Detta är ett lovande steg mot ett helt operativt databaserat skadedetektionssystem.
|
2 |
Probabilistic Detection of Nuclei in Digital Pathology using Bayesian Deep LearningZhang, Chuxin January 2022 (has links)
Deep learning (DL) has demonstrated outstanding performance in a variety of applications. With the assistance of DL, healthcare seeks to reduce labor costs and increase access to high-quality medical resources. To ensure the stability and robustness of DL applications in medicine, it is essential to estimate the uncertainty. In this thesis, the research focuses on generating an uncertainty-aware nuclei detection framework for digital pathology. A neural network (NN) with uncertainty estimation is implemented using a Bayesian deep learning method based on MC Dropout to evaluate and study the method's reliability. By evaluating and discussing the uncertainty in DL, it is possible to comprehend why it is essential to include a mechanism for measuring uncertainty. With the implementation of the framework, the results demonstrate that uncertainty-aware DL approaches enable doctors to minimize manual labeling tasks and make better decisions based on uncertainty in diagnosis and treatment. We evaluate the models in terms of both model performance and model calibration. The results demonstrate that our solution increases precision and f1 score by 15% and 11%, respectively. Using our method, the negative log likelihood (NLL) was reduced by 12% as well.
|
3 |
MULTI-LEVEL DEEP OPERATOR LEARNING WITH APPLICATIONS TO DISTRIBUTIONAL SHIFT, UNCERTAINTY QUANTIFICATION AND MULTI-FIDELITY LEARNINGRohan Moreshwar Dekate (18515469) 07 May 2024 (has links)
<p dir="ltr">Neural operator learning is emerging as a prominent technique in scientific machine learn- ing for modeling complex nonlinear systems with multi-physics and multi-scale applications. A common drawback of such operators is that they are data-hungry and the results are highly dependent on the quality and quantity of the training data provided to the models. Moreover, obtaining high-quality data in sufficient quantity can be computationally prohibitive. Faster surrogate models are required to overcome this drawback which can be learned from datasets of variable fidelity and also quantify the uncertainty. In this work, we propose a Multi-Level Stacked Deep Operator Network (MLSDON) which can learn from datasets of different fidelity and is not dependent on the input function. Through various experiments, we demonstrate that the MLSDON can approximate the high-fidelity solution operator with better accuracy compared to a Vanilla DeepONet when sufficient high-fidelity data is unavailable. We also extend MLSDON to build robust confidence intervals by making conformalized predictions. This technique guarantees trajectory coverage of the predictions irrespective of the input distribution. Various numerical experiments are conducted to demonstrate the applicability of MLSDON to multi-fidelity, multi-scale, and multi-physics problems.</p>
|
Page generated in 0.0716 seconds