• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 209
  • 197
  • 31
  • 18
  • 12
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 559
  • 559
  • 214
  • 196
  • 107
  • 102
  • 73
  • 67
  • 67
  • 67
  • 66
  • 57
  • 54
  • 50
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Algoritmos ABC em Environmental Stress Screening / ABC algorithms in Environmental Stress Screening

Reginato, Luis Gabriel Marques 06 March 2015 (has links)
É comum, em problemas de inferência bayesiana, deparar-se com uma distribuição a priori para o parâmetro de interesse, theta, que seja intratável analítica ou computacionalmente. Como a priori é uma escolha do pesquisador, tal situação ocorre por conta da intratabilidade da função de verossimilhança. Por meio de algoritmos ABC, é possível simular-se uma amostra da distribuição a posteriori, sem a utilização da verossimilhança. Neste trabalho, aplica-se o ABC no contexto de Environmental Stress Screening - ESS. ESS é um procedimento de estresse, em um processo de produção industrial, que visa evitar que peças de qualidade inferior sejam utilizadas no produto final. A partir de uma abordagem bayesiana do ESS, depara-se com uma verossimilhança (e, consequentemente, uma posteriori) intratável para o vetor de parâmetros de interesse. Utiliza-se, então, o ABC para obtenção de uma amostra da posteriori e calcula-se o tempo ótimo de duração de um futuro procedimento de estresse a partir da simulação feita. É também proposta uma generalização do problema de ESS para a situação em que existem k tipos de peças no processo de produção. Quantifica-se o problema e, novamente, aplica-se um algoritmo ABC para a obtenção de uma simulação da posteriori, bem como calcula-se o tempo ótimo de duração de um futuro teste de estresse. / In Bayesian inference problems, it is common to obtain a posterior distribution for the parameter of interest, theta, which is analytically or computationally intractable. Since the priori is chosen by the researcher, this situation arises from the intractability of the likelihood function. Through ABC algorithms it is possible to simulate a sample from the posterior distribution, without the analytical use of the likelihood function. In this work ABC is applied in the context of Environmental Stress Screening - ESS. ESS is a stress procedure, in an industrial production process, which aims to avoid low quality parts to be used in the final product. Under a Bayesian approach to ESS, an intractable likelihood (consequently, a posterior) is obtained for the paramater of interest. ABC is used to simulate a sample from the posterior and the optimal duration for a next stress procedure is calculated afterwards. A generalization of the ESS is also proposed considering that there are k types of parts in the production process. Again, ABC is used to simulate a sample from the posterior, and it is calculated the optimal duration for a next stress procedure.
92

Uncertainty Quantification and Assimilation for Efficient Coastal Ocean Forecasting

Siripatana, Adil 21 April 2019 (has links)
Bayesian inference is commonly used to quantify and reduce modeling uncertainties in coastal ocean models by computing the posterior probability distribution function (pdf) of some uncertain quantities to be estimated conditioned on available observations. The posterior can be computed either directly, using a Markov Chain Monte Carlo (MCMC) approach, or by sequentially processing the data following a data assimilation (DA) approach. The advantage of data assimilation schemes over MCMC-type methods arises from the ability to algorithmically accommodate a large number of uncertain quantities without a significant increase in the computational requirements. However, only approximate estimates are generally obtained by this approach often due to restricted Gaussian prior and noise assumptions. This thesis aims to develop, implement and test novel efficient Bayesian inference techniques to quantify and reduce modeling and parameter uncertainties of coastal ocean models. Both state and parameter estimations will be addressed within the framework of a state of-the-art coastal ocean model, the Advanced Circulation (ADCIRC) model. The first part of the thesis proposes efficient Bayesian inference techniques for uncertainty quantification (UQ) and state-parameters estimation. Based on a realistic framework of observation system simulation experiments (OSSEs), an ensemble Kalman filter (EnKF) is first evaluated against a Polynomial Chaos (PC)-surrogate MCMC method under identical scenarios. After demonstrating the relevance of the EnKF for parameters estimation, an iterative EnKF is introduced and validated for the estimation of a spatially varying Manning’s n coefficients field. Karhunen-Lo`eve (KL) expansion is also tested for dimensionality reduction and conditioning of the parameter search space. To further enhance the performance of PC-MCMC for estimating spatially varying parameters, a coordinate transformation of a Gaussian process with parameterized prior covariance function is next incorporated into the Bayesian inference framework to account for the uncertainty in covariance model hyperparameters. The second part of the thesis focuses on the use of UQ and DA on adaptive mesh models. We developed new approaches combining EnKF and multiresolution analysis, and demonstrated significant reduction in the cost of data assimilation compared to the traditional EnKF implemented on a non-adaptive mesh.
93

Uma abordagem bayesiana para modelos não lineares na presença de assimetria e heteroscedasticidade / A bayesian approach for nonlinear models in the presence of asymmetry

Campos, Aline Minniti de 22 August 2011 (has links)
Esta dissertação flexibiliza a suposição de normalidade, dispondo de distribuições assimétricas em modelos de crescimento. Propõe uma abordagem bayesiana para ajuste de modelos não lineares quando a suposição de normalidade para os erros não é razoável e/ou apresentam heteroscedasticidade. Assim, adota-se as distribuições skew-normal e skew-t para as situações em que é necessário modelar dados com caudas mais pesadas ou mais leves que a normal e assimétricos; sendo que é considerado também a presença de heteroscedasticidade. Diferentes funções são utilizadas na estrutura multiplicativa para modelar a variância. Com esse objetivo, métodos de inferência na abordagem bayesiana são desenvolvidos para estimar os parâmetros dos modelos de regressão não linear com os erros seguindo as distribuições citadas anteriormente. A metodologia visa aplicação à curvas de crescimento para dados de árvores / This paper relaxes the assumption of normality, featuring asymmetric distributions in growth models. Proposes a Bayesian approach to fit nonlinear models when the assumption of normality for the errors is not reasonable and/or exhibit heteroscedasticity. Thus, we adopt the skew-normal and skew-t distributions for situations where it is necessary to model data with tails heavier or lighter than normal and asymmetric, which is considered also the presence of heteroscedasticity. Different functions are used to model the multiplicative structure of variance. With this objective, methods of inference in the Bayesian approach are developed to estimate the parameters of nonlinear regression models with errors following the distributions listed above. The methodology is intended to apply to the growth curves for trees data sets
94

Modelagem de curvas de juros usando amostragem de frequências mistas / The term structure of interest rates model using mixed data sampling

Minioli, Ana Carolina Santana 04 July 2014 (has links)
Neste trabalho, tínhamos por objetivo propor um modelo dinâmico de estrutura a termo de taxas de juros com variáveis macroeconômicas baseado na formulações de Diebold e Li (2006) e Nelson e Siegel (1987) (DNS). A estrutura de estimação proposta permite utilizar dados de frequências distintas, combinando observações diárias de curvas de juros e mensais de variáveis macroeconômicas de interesse através de uma estrutura MIDAS - Mixed Data Sampling. Também utilizamos uma estrutura de volatilidade estocástica multivariada para os fatores latentes e variáveis macroeconômicas e também permitimos que o parâmetro de decaimento do modelo DNS varie no tempo, permitindo capturar mudanças na estrutura de volatilidade condicional e no formato das curvas em períodos longos. O procedimento de estimação é baseado em métodos Bayesianos usando Markov Chain Monte Carlo. Aplicamos este modelos para a curva de juros de títulos do Tesouro Americano entre 1997 e 2011. Os resultados indicam que incorporação de informações diárias e mensais em um mesmo modelo permite ganhos significantes de ajuste, superando as estimativas usuais baseadas em modelos sem informações macroeconômicas e nos métodos usuais de estimação do modelo de Diebold e Li (2006) / In this present work, we propose a dynamic model for the term structure of interest rates with macroeconomic variables based on Diebold e Li (2006)\'s and Nelson e Siegel (1987)\'s researches. The estimation procedure we intend to build allows time series data sampled at different frequencies, mixing daily observations of yield curves and monthly observations of macroeconomic variable through a Mixed Data Sampling (MIDAS) regression. We also make use of a multivariate stochastic volatility structure for the latent factors and allow the parameter that governs the exponential decay rate to vary trough time, which enables us to capture changes both in the conditional volatility structure and in the curve\'s shapes during long periods. The estimation procedure is based on Baeysian inference trough the usage of of Markov Chain Monte Carlo (MCMC) method. We applied these models to the U.S. Treasure bonds\' yield curve from 1997 to 2011. The results denote that joining daily and monthly information into the same model allows significant gains on fitting these models to the term structure, overcoming the usual estimates based on models without macroeconomics information and on regular estimation methods of Diebold e Li (2006)\'s model.
95

Modelagem em análise de sobrevivência para dados médicos bivariados utilizando funções cópulas e fração de cura / Modeling in survival analysis for medical data using bivariate copula functions and cure fraction.

Barros, Emilio Augusto Coelho 31 July 2014 (has links)
Modelos de mistura e de não mistura em longa duracão, são aplicados na analise de dados de sobrevivência quando uma parcela de indivduos não são suscetíveis ao evento de interesse. Diferentes modelos estatsticos são propostos para analisar dados de sobrevivência na presenca de fracão de cura. Nesta tese, e proposto o uso de novos modelos. Sob o ponto de vista univariado, inicialmente e considerado o caso em que os dados de sobrevivênciaa seguem distribuicão Burr XII com três parâmetros, no qual inclui o modelo de mistura para a distribuicão Weibull como caso particular. Um modelo de sobrevivência geral e estudado considerando a situacão em que os parâmtreos de locacão e forma dessa distribuicão dependem de covariaveis. Ainda considerando o caso univariado, um estudo da distribuicãoo exponencial exponenciada com dois parâmetros e realizado. Essa distribuicão, tambem conhecida como distribuicão exponencial generalizada, e um caso particular da distribuicão Weibull exponenciada, introduzida por Mudholkar e Srivastava (1993). Um modelo de sobrevivência geral tambem e estudado, nesse caso considera-se a situacão em que os parâmetros de escala, forma e de fracão de cura da distribuicão exponencial exponenciada dependem de covariaveis. Um terceiro estudo univariado considera a distribuicão Weibull na presenca de fracão de cura, dados censurados e covariaveis. Nesse caso, dois modelos são estudados: modelo de mistura e modelo de não mistura. Quando dois tempos de sobrevivência distintos estão associados a cada unidade amostral (caso bivariado), na analise dos dados e possvel utilizar algumas distribuicões bivariadas: em especial a distribuicão exponencial bivariada de Block e Basu. As estimativas dos parâmetros da distribuicão exponencial bivariada de Block e Basu na presenca de fracão de cura e covariaveis são obtidas. Sob o ponto de vista bivariado tambem sera considerado o caso da distribuicão Weibull bivariada derivada de função copula na presenca de fração ao de cura, dados censurados e covariaveis. Duas funcões copulas são exploradas: a funcão copula Farlie-Gumbel-Morgenstern (FGM) e a funcão copula Gumbel. Procedimentos classicos e Bayesianos são utilizados para obter estimadores pontuais e intervalares dos parâmetros desconhecidos. Para vericar a utilidade e o comportamento dos modelos, alguns conjuntos de dados na area medica são analisados. / Mixture and non-mixture lifetime models are applied to analyze survival data when some individuals may never experience the event of interest. Dierent statistical models are proposed to analyze survival data in the presence of cure fraction. In this thesis, we propose the use of new models. From the univariate case, we consider that the lifetime data have a three-parameter Burr XII distribution, which includes the popular Weibull mixture model as a special case. We consider a general survival model where the scale and shape parameters of the Burr XII distribution depends on covariates. Also considering the univariate case the two-parameters exponentiated exponential distribution is used. The two-parameter exponentiated exponential or the generalized exponential distribution is a particular member of the exponentiated Weibull distribution introduced by Mudholkar and Srivastava (1993). We also consider in this case a general survival model where the scale, shape and cured fraction parameters of the exponentiated exponential distribution depends on covariates. We also introduce the univariate Weibull distributions in presence of cure fraction, censored data and covariates. Two models are explored in this case: the mixture model and non-mixture model. When we have two lifetimes associated with each unit (bivariate data), we can use some bivariate distributions: as special case the Block and Basu bivariate lifetime distribution. We also presents estimates for the parameters included in Block and Basu bivariate lifetime distribution in presence of covariates and cure fraction, applied to analyze survival data when some individuals may never experience the event of interest and two lifetimes are associated with each unit. We also consider in bivariate case the bivariate Weibull distributions derived from copula functions in presence of cure fraction, censored data and covariates. Two copula functions are explored in this paper: the Farlie-Gumbel-Morgenstern copula (FGM) and the Gumbel copula. Classical and Bayesian procedures are used to get point and condence intervals of the unknown parameters. Illustrations of the proposed methodologies are given considering medicals data sets.
96

Análise Bayesiana de ensaios fatoriais 2k usando os princípios dos efeitos esparsos, da hierarquia e da hereditariedade / Bayesian analysis of 2k factorial designs using the sparse eects, hierarchy and heredity principles

Biz, Guilherme 29 January 2010 (has links)
No Planejamento de experimentos para o ajuste de modelos polinomiais envolvendo k fatores principais e respectivas interações, e bastante comum a utilização dos fatoriais 2k, 3k ou frações dos mesmos. Para as analises dos resultados desses experimentos, freqüentemente se considera o princípio da hereditariedade, ou seja, uma vez constatada uma interação significativa entre fatores, os fatores que aparecem nesta interação e respectivas interações devem também estar presentes no modelo. Neste trabalho, esse princípio e incorporado diretamente a priori, para um método de seleção de variáveis Bayesiana, seguindo as idéias propostas por Chipman, Hamada e Wu (1997), porem com uma alteração dos valores sugeridos pelos autores para os hiperparâmetros. Essa alteração, proposta neste trabalho, promove uma melhoria considerável na metodologia original. A metodologia e então ilustrada por meio da analise dos resultados de um experimento fatorial para a elaboração de biofilmes de amido originado da ervilha. / In experimental planning for adjustment of polynomials models involving k main factors and their interactions, it is frequent to adopt the 2k, 3k designs or its fractions. Furthermore, it is not unusual, when analysing the results of such experiments, to consider the heredity principle. In other words, once detected a signicant interaction between factors, the factors that appear in this interaction and respective interactions should also be present in the model. In this work, this principle is incorporated directly in the prior, following the ideas proposed by Chipman, Hamada and Wu (1997), but changing some of the hyperparameters. What improves considerably the original methodology. Finally the methodology is illustrated by the analysis of the results of an experiment for the elaboration of pea starch biolms.
97

Uma abordagem bayesiana para mapeamento de QTLs em populações experimentais / A Bayesian approach for mapping QTL in experimental populations

Meyer, Andréia da Silva 03 April 2009 (has links)
Muitos caracteres em plantas e animais são de natureza quantitativa, influenciados por múltiplos genes. Com o advento de novas técnicas moleculares tem sido possível mapear os locos que controlam os caracteres quantitativos, denominados QTLs (Quantitative Trait Loci). Mapear um QTL significa identificar sua posição no genoma, bem como, estimar seus efeitos genéticos. A maior dificuldade para realizar o mapeamento de QTLs, se deve ao fato de que o número de QTLs é desconhecido. Métodos bayesianos juntamente com método Monte Carlo com Cadeias de Markov (MCMC), têm sido implementados para inferir conjuntamente o número de QTLs, suas posições no genoma e os efeitos genéticos . O desafio está em obter a amostra da distribuição conjunta a posteriori desses parâmetros, uma vez que o número de QTLs pode ser considerado desconhecido e a dimensão do espaço paramétrico muda de acordo com o número de QTLs presente no modelo. No presente trabalho foi implementado, utilizando-se o programa estatístico R uma abordagem bayesiana para mapear QTLs em que múltiplos QTLs e os efeitos de epistasia são considerados no modelo. Para tanto foram ajustados modelos com números crescentes de QTLs e o fator de Bayes foi utilizado para selecionar o modelo mais adequado e conseqüentemente, estimar o número de QTLs que controlam os fenótipos de interesse. Para investigar a eficiência da metodologia implementada foi feito um estudo de simulação em que foram considerados duas diferentes populações experimentais: retrocruzamento e F2, sendo que para ambas as populações foi feito o estudo de simulação considerando modelos com e sem epistasia. A abordagem implementada mostrou-se muito eficiente, sendo que para todas as situações consideradas o modelo selecionado foi o modelo contendo o número verdadeiro de QTLs considerado na simulação dos dados. Além disso, foi feito o mapeamento de QTLs de três fenótipos de milho tropical: altura da planta (AP), altura da espiga (AE) e produção de grãos utilizando a metodologia implementada e os resultados obtidos foram comparados com os resultados encontrados pelo método CIM. / Many traits in plants and animals have quantitative nature, influenced by multiple genes. With the new molecular techniques, it has been possible to map the loci, which control the quantitative traits, called QTL (Quantitative Trait Loci). Mapping a QTL means to identify its position in the genome, as well as to estimate its genetics effects. The great difficulty of mapping QTL relates to the fact that the number of QTL is unknown. Bayesian approaches used with Markov Chain Monte Carlo method (MCMC) have been applied to infer QTL number, their positions in the genome and their genetic effects. The challenge is to obtain the sample from the joined distribution posterior of these parameters, since the number of QTL may be considered unknown and hence the dimension of the parametric space changes according to the number of QTL in the model. In this study, a Bayesian approach was applied, using the statistical program R, in order to map QTL, considering multiples QTL and epistasis effects in the model. Models were adjusted with the crescent number of QTL and Bayes factor was used to select the most suitable model and, consequently, to estimate the number of QTL that control interesting phenotype. To evaluate the efficiency of the applied methodology, a simulation study was done, considering two different experimental populations: backcross and F2, accomplishing the simulation study for both populations, considering models with and without epistasis. The applied approach resulted to be very efficient, considering that for all the used situations, the selected model was the one containing the real number of QTL used in the data simulation. Moreover, the QTL mapping of three phenotypes of tropical corn was done: plant height, corn-cob height and grain production, using the applied methodology and the results were compared to the results found by the CIM method.
98

Estimando a aversão ao risco no mercado de seguros de automóveis / Estimating Risk Preferences From Auto Insurance Market

Lopes, Caio Matteúcci de Andrade 20 May 2015 (has links)
O objetivo deste trabalho é estimar a distribuição conjunta do risco e da aversão ao risco no mercado de seguros de automóveis. Para tal, será utilizado o modelo estrutural proposto por Cohen e Einav (2007), que permite identificar esta distribuição à partir das coberturas escolhidas pelos segurados e dos sinistros declarados. Na metodologia empírica, utilizamos o método de Monte Carlo via Cadeias de Markov (MCMC). A base de dados utilizada se refere à apólices de seguros transacionadas na região metropolitana de São Paulo, apenas para a seguradora com maior participação neste mercado. Os resultados obtidos indicam que os coeficientes de aversão ao risco absoluto apresentam média baixa, mediana ainda menor e elevada heterogeneidade não observada. Observou-se também uma correlação negativa entre o risco e a aversão ao risco. / This study aims to estimate the distribution of risk aversion from the car insurance market. For this, the method proposed by Cohen e Einav (2007) model that allows unobserved risk is used. The data refer to the metropolitan area of São Paulo with an analysis restricted to only one insurer. The methodology will be the Gibbs sampling which enables increased data risk of latent variables and risk aversion. The results indicate a small mean level of absolute risk aversion and even lower median, featuring high dispersion coefficients.
99

A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models

Miazhynskaia, Tatiana, Frühwirth-Schnatter, Sylvia, Dorffner, Georg January 2003 (has links) (PDF)
This paper presents a comprehensive review and comparison of five computational methods for Bayesian model selection, based on MCMC simulations from posterior model parameter distributions. We apply these methods to a well-known and important class of models in financial time series analysis, namely GARCH and GARCH-t models for conditional return distributions (assuming normal and t-distributions). We compare their performance vis--vis the more common maximum likelihood-based model selection on both simulated and real market data. All five MCMC methods proved feasible in both cases, although differing in their computational demands. Results on simulated data show that for large degrees of freedom (where the t-distribution becomes more similar to a normal one), Bayesian model selection results in better decisions in favour of the true model than maximum likelihood. Results on market data show the feasibility of all model selection methods, mainly because the distributions appear to be decisively non-Gaussian. / Series: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
100

Modelagem em análise de sobrevivência para dados médicos bivariados utilizando funções cópulas e fração de cura / Modeling in survival analysis for medical data using bivariate copula functions and cure fraction.

Emilio Augusto Coelho Barros 31 July 2014 (has links)
Modelos de mistura e de não mistura em longa duracão, são aplicados na analise de dados de sobrevivência quando uma parcela de indivduos não são suscetíveis ao evento de interesse. Diferentes modelos estatsticos são propostos para analisar dados de sobrevivência na presenca de fracão de cura. Nesta tese, e proposto o uso de novos modelos. Sob o ponto de vista univariado, inicialmente e considerado o caso em que os dados de sobrevivênciaa seguem distribuicão Burr XII com três parâmetros, no qual inclui o modelo de mistura para a distribuicão Weibull como caso particular. Um modelo de sobrevivência geral e estudado considerando a situacão em que os parâmtreos de locacão e forma dessa distribuicão dependem de covariaveis. Ainda considerando o caso univariado, um estudo da distribuicãoo exponencial exponenciada com dois parâmetros e realizado. Essa distribuicão, tambem conhecida como distribuicão exponencial generalizada, e um caso particular da distribuicão Weibull exponenciada, introduzida por Mudholkar e Srivastava (1993). Um modelo de sobrevivência geral tambem e estudado, nesse caso considera-se a situacão em que os parâmetros de escala, forma e de fracão de cura da distribuicão exponencial exponenciada dependem de covariaveis. Um terceiro estudo univariado considera a distribuicão Weibull na presenca de fracão de cura, dados censurados e covariaveis. Nesse caso, dois modelos são estudados: modelo de mistura e modelo de não mistura. Quando dois tempos de sobrevivência distintos estão associados a cada unidade amostral (caso bivariado), na analise dos dados e possvel utilizar algumas distribuicões bivariadas: em especial a distribuicão exponencial bivariada de Block e Basu. As estimativas dos parâmetros da distribuicão exponencial bivariada de Block e Basu na presenca de fracão de cura e covariaveis são obtidas. Sob o ponto de vista bivariado tambem sera considerado o caso da distribuicão Weibull bivariada derivada de função copula na presenca de fração ao de cura, dados censurados e covariaveis. Duas funcões copulas são exploradas: a funcão copula Farlie-Gumbel-Morgenstern (FGM) e a funcão copula Gumbel. Procedimentos classicos e Bayesianos são utilizados para obter estimadores pontuais e intervalares dos parâmetros desconhecidos. Para vericar a utilidade e o comportamento dos modelos, alguns conjuntos de dados na area medica são analisados. / Mixture and non-mixture lifetime models are applied to analyze survival data when some individuals may never experience the event of interest. Dierent statistical models are proposed to analyze survival data in the presence of cure fraction. In this thesis, we propose the use of new models. From the univariate case, we consider that the lifetime data have a three-parameter Burr XII distribution, which includes the popular Weibull mixture model as a special case. We consider a general survival model where the scale and shape parameters of the Burr XII distribution depends on covariates. Also considering the univariate case the two-parameters exponentiated exponential distribution is used. The two-parameter exponentiated exponential or the generalized exponential distribution is a particular member of the exponentiated Weibull distribution introduced by Mudholkar and Srivastava (1993). We also consider in this case a general survival model where the scale, shape and cured fraction parameters of the exponentiated exponential distribution depends on covariates. We also introduce the univariate Weibull distributions in presence of cure fraction, censored data and covariates. Two models are explored in this case: the mixture model and non-mixture model. When we have two lifetimes associated with each unit (bivariate data), we can use some bivariate distributions: as special case the Block and Basu bivariate lifetime distribution. We also presents estimates for the parameters included in Block and Basu bivariate lifetime distribution in presence of covariates and cure fraction, applied to analyze survival data when some individuals may never experience the event of interest and two lifetimes are associated with each unit. We also consider in bivariate case the bivariate Weibull distributions derived from copula functions in presence of cure fraction, censored data and covariates. Two copula functions are explored in this paper: the Farlie-Gumbel-Morgenstern copula (FGM) and the Gumbel copula. Classical and Bayesian procedures are used to get point and condence intervals of the unknown parameters. Illustrations of the proposed methodologies are given considering medicals data sets.

Page generated in 0.0931 seconds