• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation and Bayesian optimality

Joyce, Thomas January 2016 (has links)
This doctoral thesis will present the results of work into optimisation algorithms. We first give a detailed exploration of the problems involved in comparing optimisation algorithms. In particular we provide extensions and refinements to no free lunch results, exploring algorithms with arbitrary stopping conditions, optimisation under restricted metrics, parallel computing and free lunches, and head-to-head minimax behaviour. We also characterise no free lunch results in terms of order statistics. We then ask what really constitutes understanding of an optimisation algorithm. We argue that one central part of understanding an optimiser is knowing its Bayesian prior and cost function. We then pursue a general Bayesian framing of optimisation, and prove that this Bayesian perspective is applicable to all optimisers, and that even seemingly non-Bayesian optimisers can be understood in this way. Specifically we prove that arbitrary optimisation algorithms can be represented as a prior and a cost function. We examine the relationship between the Kolmogorov complexity of the optimiser and the Kolmogorov complexity of it’s corresponding prior. We also extended our results from deterministic optimisers to stochastic optimisers and forgetful optimisers, and we show that uniform randomly selecting a prior is not equivalent to uniform randomly selecting an optimisation behaviour. Lastly we consider what the best way to go about gaining a Bayesian understanding of real optimisation algorithms is. We use the developed Bayesian framework to explore the affects of some common approaches to constructing meta-heuristic optimisation algorithms, such as on-line parameter adaptation. We conclude by exploring an approach to uncovering the probabilistic beliefs of optimisers with a “shattering” method.
2

Semi-automatic Segmentation & Alignment of Handwritten Historical Text Images with the use of Bayesian Optimisation

MacCormack, Philip January 2023 (has links)
To effortlessly digitise historical documents has risen to be of great interest for some time. Part of the digitisation is what is called annotating of the data. Such data annotations are obtained in a process called alignment which links words in an image to the transcript. Annotated data have many use cases such as being used in the training of handwritten text recognition models. Relevant to the application above, this project aimed to develop an interactive algorithm for the segmentation and alignment of historical document images. Two different developed methods (referred to as method 1 and method 2) were evaluated and compared on two different data sets Labour’sMemory and IAM. A method to incorporate self-learning was also developed and evaluated with Bayesian optimisation aimed at automatically setting parameters for the algorithm. The results proved that the algorithms perform better on the IAM data set, which could partly be explained by the difference in quality of the ground truth used for calculation of the performance metrics. Moreover, method 2 slightly outperformed method 1 for both data sets. Bayesian optimisation proved to be a reasonable, and more time efficient way of effectively setting parameters compared to manually finding parameters for each document. The work done in this project could serve as the basis for the future development of a useful and interactive tool for the alignment of text documents.
3

Accelerating Monte Carlo methods for Bayesian inference in dynamical models

Dahlin, Johan January 2016 (has links)
Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. / Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.

Page generated in 0.1233 seconds