• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 8
  • 8
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 52
  • 52
  • 19
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • 12
  • 12
  • 10
  • 8
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Buckling analysis of laminated composite beams by using an improved first order formulation

Ayala, Shammely, Vallejos, Augusto, Arciniega, Roman 01 January 2021 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / In this work, a finite element model based on an improved first-order formulation (IFSDT) is developed to analyze buckling phenomenon in laminated composite beams. The formulation has five independent variables and takes into account thickness stretching. Threedimensional constitutive equations are employed to define the material properties. The Trefftz criterion is used for the stability analysis. The finite element model is derived from the principle of virtual work with high-order Lagrange polynomials to interpolate the field variables and to prevent shear locking. Numerical results are compared and validated with those available in literature. Furthermore, a parametric study is presented.
12

Interactive Buckling and Post-Buckling Studies of Thin-Walled Structural Members with Generalized Beam Theory

Cai, Junle 16 February 2017 (has links)
Most thin-walled metallic structural members experience some extent of interactive buckling that corrodes the load carrying capacity. Current design methods predict the strength of thin-walled metallic structural members based on individual buckling limit-states and limited case of interactive buckling limit state. In order to develop design methods for most coupled buckling limit states, the interaction of buckling modes needs to be studied. This dissertation first introduces a generally applicable methodology for Generalized Beam Theory (GBT) elastic buckling analysis on members with holes, where the buckling modes of gross cross-section interact with those of net cross-section. The approach treats member with holes as a structural system consisting of prismatic sub-members. These sub-members are connected by enforcing nodal compatibility conditions for the GBT discretization points at the interfaces. To represent the shear lag effect and nonlinear normal stress distribution in the vicinity of a hole, GBT shear modes with nonlinear warping are included. Modifications are made to the GBT geometric stiffness because of the influence from shear lag effect caused by holes. In the following sections, the GBT formulation for a prismatic bar is reviewed and the GBT formulation for members with holes is introduced. Special aspects of analyzing members with holes are defined, namely the compatibility conditions to connect sub-members and the geometric stiffness for members with holes. Validation and three examples are provided. The second topic of this dissertation involves a buckling mode decomposition method of normalized displacement field, bending stresses and strain energy for thin-walled member displacement field (point clouds or finite element results) based on generalized beam theory (GBT). The method provides quantitative modal participation information regarding eigen-buckling displacement fields, stress components and elastic strain energy, that can be used to inform future design approaches. In the method, GBT modal amplitudes are retrieved at discrete cross-sections, and the modal amplitude field is reconstructed assuming it can be piece-wisely approximated by polynomials. The unit displacement field, stress components and strain energy are all retrieved by using reconstructed GBT modal amplitude field and GBT constitutive laws. Theory and examples are provided, and potential applications are discussed including cold-formed steel member design and post-disaster evaluation of thin-walled structural members. In the third part, post-buckling modal decomposition is made possible by development of a geometrically nonlinear GBT software. This tool can be used to assist understanding couple-buckling limit-states. Lastly, the load-deformation response considering any one GBT mode is derived analytically for fast computation and interpretation of structural post-buckling behavior. / Ph. D.
13

Static and dynamic analysis of multi-cracked beams with local and non-local elasticity

Dona, Marco January 2014 (has links)
The thesis presents a novel computational method for analysing the static and dynamic behaviour of a multi-damaged beam using local and non-local elasticity theories. Most of the lumped damage beam models proposed to date are based on slender beam theory in classical (local) elasticity and are limited by inaccuracies caused by the implicit assumption of the Euler-Bernoulli beam model and by the spring model itself, which simplifies the real beam behaviour around the crack. In addition, size effects and material heterogeneity cannot be taken into account using the classical elasticity theory due to the absence of any microstructural parameter. The proposed work is based on the inhomogeneous Euler-Bernoulli beam theory in which a Dirac's delta function is added to the bending flexibility at the position of each crack: that is, the severer the damage, the larger is the resulting impulsive term. The crack is assumed to be always open, resulting in a linear system (i.e. nonlinear phenomena associated with breathing cracks are not considered). In order to provide an accurate representation of the structure's behaviour, a new multi-cracked beam element including shear effects and rotatory inertia is developed using the flexibility approach for the concentrated damage. The resulting stiffness matrix and load vector terms are evaluated by the unit-displacement method, employing the closed-form solutions for the multi-cracked beam problem. The same deformed shapes are used to derive the consistent mass matrix, also including the rotatory inertia terms. The two-node multi-damaged beam model has been validated through comparison of the results of static and dynamic analyses for two numerical examples against those provided by a commercial finite element code. The proposed model is shown to improve the computational efficiency as well as the accuracy, thanks to the inclusion of both shear deformations and rotatory inertia. The inaccuracy of the spring model, where for example for a rotational spring a finite jump appears on the rotations' profile, has been tackled by the enrichment of the elastic constitutive law with higher order stress and strain gradients. In particular, a new phenomenological approach based upon a convenient form of non-local elasticity beam theory has been presented. This hybrid non-local beam model is able to take into account the distortion on the stress/strain field around the crack as well as to include the microstructure of the material, without introducing any additional crack related parameters. The Laplace's transform method applied to the differential equation of the problem allowed deriving the static closed-form solution for the multi-cracked Euler-Bernoulli beams with hybrid non-local elasticity. The dynamic analysis has been performed using a new computational meshless method, where the equation of motions are discretised by a Galerkin-type approximation, with convenient shape functions able to ensure the same grade of approximation as the beam element for the classical elasticity. The importance of the inclusion of microstructural parameters is addressed and their effects are quantified also in comparison with those obtained using the classical elasticity theory.
14

Damage modeling and damage detection for structures using a perturbation method

Dixit, Akash 06 January 2012 (has links)
This thesis is about using structural-dynamics based methods to address the existing challenges in the field of Structural Health Monitoring (SHM). Particularly, new structural-dynamics based methods are presented, to model areas of damage, to do damage diagnosis and to estimate and predict the sensitivity of structural vibration properties like natural frequencies to the presence of damage. Towards these objectives, a general analytical procedure, which yields nth-order expressions governing mode shapes and natural frequencies and for damaged elastic structures such as rods, beams, plates and shells of any shape is presented. Features of the procedure include the following: 1. Rather than modeling the damage as a fictitious elastic element or localized or global change in constitutive properties, it is modeled in a mathematically rigorous manner as a geometric discontinuity. 2. The inertia effect (kinetic energy), which, unlike the stiffness effect (strain energy), of the damage has been neglected by researchers, is included in it. 3. The framework is generic and is applicable to wide variety of engineering structures of different shapes with arbitrary boundary conditions which constitute self adjoint systems and also to a wide variety of damage profiles and even multiple areas of damage. To illustrate the ability of the procedure to effectively model the damage, it is applied to beams using Euler-Bernoulli and Timoshenko theories and to plates using Kirchhoff's theory, supported on different types of boundary conditions. Analytical results are compared with experiments using piezoelectric actuators and non-contact Laser-Doppler Vibrometer sensors. Next, the step of damage diagnosis is approached. Damage diagnosis is done using two methodologies. One, the modes and natural frequencies that are determined are used to formulate analytical expressions for a strain energy based damage index. Two, a new damage detection parameter are identified. Assuming the damaged structure to be a linear system, the response is expressed as the summation of the responses of the corresponding undamaged structure and the response (negative response) of the damage alone. If the second part of the response is isolated, it forms what can be regarded as the damage signature. The damage signature gives a clear indication of the damage. In this thesis, the existence of the damage signature is investigated when the damaged structure is excited at one of its natural frequencies and therefore it is called ``partial mode contribution". The second damage detection method is based on this new physical parameter as determined using the partial mode contribution. The physical reasoning is verified analytically, thereupon it is verified using finite element models and experiments. The limits of damage size that can be determined using the method are also investigated. There is no requirement of having a baseline data with this damage detection method. Since the partial mode contribution is a local parameter, it is thus very sensitive to the presence of damage. The parameter is also shown to be not affected by noise in the detection ambience.
15

Towards multidisciplinary design optimization capability of horizontal axis wind turbines

McWilliam, Michael Kenneth 13 August 2015 (has links)
Research into advanced wind turbine design has shown that load alleviation strategies like bend-twist coupled blades and coned rotors could reduce costs. However these strategies are based on nonlinear aero-structural dynamics providing additional benefits to components beyond the blades. These innovations will require Multi-disciplinary Design Optimization (MDO) to realize the full benefits. This research expands the MDO capabilities of Horizontal Axis Wind Turbines. The early research explored the numerical stability properties of Blade Element Momentum (BEM) models. Then developed a provincial scale wind farm siting models to help engineers determine the optimal design parameters. The main focus of this research was to incorporate advanced analysis tools into an aero-elastic optimization framework. To adequately explore advanced designs with optimization, a new set of medium fidelity analysis tools is required. These tools need to resolve more of the physics than conventional tools like (BEM) models and linear beams, while being faster than high fidelity techniques like grid based computational fluid dynamics and shell and brick based finite element models. Nonlinear beam models based on Geometrically Exact Beam Theory (GEBT) and Variational Asymptotic Beam Section Analysis (VABS) can resolve the effects of flexible structures with anisotropic material properties. Lagrangian Vortex Dynamics (LVD) can resolve the aerodynamic effects of novel blade curvature. Initially this research focused on the structural optimization capabilities. First, it developed adjoint-based gradients for the coupled GEBT and VABS analysis. Second, it developed a composite lay-up parameterization scheme based on manufacturing processes. The most significant challenge was obtaining aero-elastic optimization solutions in the presence of erroneous gradients. The errors are due to poor convergence properties of conventional LVD. This thesis presents a new LVD formulation based on the Finite Element Method (FEM) that defines an objective convergence metric and analytic gradients. By adopting the same formulation used in structural models, this aerodynamic model can be solved simultaneously in aero-structural simulations. The FEM-based LVD model is affected by singularities, but there are strategies to overcome these problems. This research successfully demonstrates the FEM-based LVD model in aero-elastic design optimization. / Graduate / 0548 / pilot.mm@gmail.com
16

Wave Propagation in Sandwich Beam Structures with Novel Modeling Schemes

Sudhakar, V January 2016 (has links) (PDF)
Sandwich constructions are the most commonly used structures in aircraft and navy industries, traditionally. These structures are made up of the face sheets and the core, where the face sheets will be taking the load and is connected to other structural members, while the soft core material, will be used to absorb energy during impact like situation. Thus, sandwich constructions are mainly employed in light weight structures where the high energy absorption capability is required. Generally the face sheets will be thin, made up of either metallic or composite material with high stiffness and strength, while the core is light in weight, made up of soft material. Cores generally play very crucial role in achieving the desired properties of sandwich structures, either through geometric arrangement or material properties or both. Foams are in extensive use nowadays as core material due to the ease in manufacturing and their low cost. They are extensively used in automotive and industrial field applications as the desired foam density can be fabricated by adjusting the mixing, curing and heat sink processes. Modeling of sandwich beams play a crucial role in their design with suitable finite elements for face sheets and core, to ensure the compatibility between degrees of freedom at the interfaces. Unless the mathematical model simulates the physics of the model in terms of kinematics, boundary and loading conditions, results predicted will not be accurate. Accurate models helps in obtaining an efficient design of sandwich beams. In Structural Health Monitoring studies, the responses under the impact loading will be captured by carrying out the wave propagation analysis. The loads applied will be for a shorter duration (in the orders of micro seconds), where higher frequency modes will be excited. Wavelengths at such high frequencies are very small and hence, in such cases, very fine mesh generally is employed matching the wavelength requirement of the propagating wave. Traditional Finite element softwares takes enormous time and computational e ort to provide the solution. Various possible models and modeling aspects using the existing Finite element tools for wave propagation analysis are studied in the present work. There exists a huge demand for an accurate, efficient and rapidly convergent finite elements for the analysis of sandwich beams. E orts are made in the present work to address these issues and provide a solution to the sandwich user community. Super convergent and Spectral Finite sandwich Beam Elements with metallic or composite face sheets and soft core are developed. As a philosophy, the sandwich beam finite element is constructed with the combination of two beams representing the face sheets (top and bottom) at their neutral axis. The core effects are captured at the interface boundaries in terms of shear stress and normal transverse stress. In the case of wave propagation analysis, the equations are coupled in time domain and spatial domain and solving them directly is a difficult task. In Spectral Finite Element Method(SFEM), the displacement functions are derived by solving the transformed governing equations in the frequency domain. By transforming them and forces from time domain to frequency domain, the coupled partial differential equations will become coupled ordinary differential equations. These equations in frequency domain, can be solved exactly as they are normally ordinary differential equation with constant coefficients with frequency entering as a parameter. These solutions will be used as interpolating functions for spectral element formulation and in this respect it differs from conventional FE method wherein mostly polynomials are used as interpolating functions. In addition, SFEM solutions are expressed in terms of forward and backward moving waves for all the degrees of freedom involved in the formulations and hence, SFEM provides faster and efficient solutions for wave propagation analysis. In the present work, strong form of the governing differential equations are derived for a given system using Hamilton's principle. Super Convergent elements are developed by solving the static part of the governing differential equations exactly and hence the stiffness matrix derived is exact for point static loads. For wave propagation analysis, as the mass is not exactly represented, these elements are required in the optimal numbers for getting good results. The number of these elements required are generally much lesser than the number of elements required using traditional finite elements since the stiffness distribution is exact. Spectral elements are developed by solving the governing equations exactly in the frequency domain and hence the dynamic stiffness matrix derived is exact for the dynamic loads. Hence, one element between any two joints is enough to solve the whole system under impact loads for simple structures. Developing FE for sandwich beams is quiet challenging. Due to small thickness, the face sheets can be modeled using 1D idealization, while modeling of large core requires 2-D idealization. Hence, most finite or spectral elements requires stitching of these two idealizations into 1-D idealization, which can be accomplished in a variety of ways, some of which are highlighted in this thesis. Variety of finite and spectral finite elements are developed considering Euler and Timoshenko beam theories for modeling the sandwich beams. Simple element models are built with rigid core in both the theories. Models are also developed considering the flexible core with the variation of transverse displacements across depth of the core. This has direct influence on shear stress variation and also transverse normal stress in the core. Simple to higher order models are developed considering different variations in shear stress and transverse normal stress across depth of the core. Development of super convergent finite Euler Bernoulli beam elements Eul4d (4 dof element), Eul10d (10 dof element) are explained along with their results in Chapter 2. Development of different super convergent finite Timoshenko beam elements namely Tim4d (4 dof), Tim7d (7 dof), Tim10d (10 dof) are explained in Chapter 3. Validation of Euler Bernoulli and Timoshenko elements developed in the present work is carried out with test cases available in the open literature for displacements and free vibration frequencies are presented in Chapter 2 and Chapter 3. The results indicates that all developed elements are performing exceedingly well for static loads and free vibration. Super convergence performance for the elements developed is demonstrated with related examples. Spectral elements based on Timoshenko theory STim7d, STim6d, STim6dF are developed and the wave propagation characteristics studies are presented in Chapter 4. Euler spectral elements are derived from Timoshenko spectral elements by enforcing in finite shear rigidity, designated as SEul7d, SEul6d, SEul6dF and are presented. E orts were made in this present work to model the horizontal cracks in top or bottom face sheets using the spectral elements and the methodology is presented in Chapter 4. Wave propagation analysis using general purpose software N AST RAN and the super convergent as well as spectral elements developed in this work, are discussed in detail in Chapter 5. Modeling aspects of sandwich beam in N AST RAN using various combination of elements available and the performance of four possible models simulated were studied. Validation of all four models in N AST RAN, Super convergent Euler, Timoshenko and Spectral Timoshenko finite elements was carried out by simulating a homogenous I beam by comparing the longitudinal and transverse responses. Studies were carried out to find out the response predictions of a sandwich beam with soft core and all the predictions were compared and discussed. The responses in case of cracks in top or bottom face sheets under the longitudinal and transverse loading were studied in this chapter. In Chapter 6, Parametric studies were carried out for bringing out the sensitiveness of the important specific parameters in overall behaviour and performance of a sandwich beam, using Super convergent and Spectral elements developed. This chapter clearly brings out the various aspects of design of sandwich beam such as material selection of core, geometrical configuration of overall beam and core. Effects of shear modulus, mass density on wave propagation characteristics, effects of thick or thin cores with reference to the face sheets and dynamic effects of core are highlighted. Wave propagation characteristics studies includes the study of wave numbers, group speeds, cut off frequencies for a given configuration and identification of frequency zone of operations. The recommendations for improvement in design of sandwich beams based on the parametric studies are made at the end of chapter. The entire thesis, written in seven Chapters, presents a unified treatment of sandwich beam analysis that will be very useful for designers working in the area.
17

Design and analysis of the Hobby-Eberly Telescope Dark Energy Experiment bridge

Worthington, Michael Scott 26 October 2010 (has links)
A large structural weldment has been designed to serve as the new star tracker bridge for the Dark Energy Experiment upgrade to the Hobby-Eberly Telescope at McDonald Observatory. The modeling approach, analysis techniques and design details will be of interest to designers of large structures where stiffness is the primary design driver. The design includes detailed structural analysis using finite element models to maximize natural frequency response and limit deflections and light obscuration. Considerable fabrication challenges are overcome to allow integration of precision hardware required for positioning the corrector optics to a precision of less than 5 microns along the 4-meter travel range. This thesis provides detailed descriptions of the bridge geometry, analysis results and challenging fabrication issues. / text
18

Modeling spanwise nonuniformity in the cross-sectional analysis of composite beams

Ho, Jimmy Cheng-Chung 30 June 2009 (has links)
Spanwise nonuniformity effects are modeled in the cross-sectional analysis of beam theory. This modeling adheres to an established numerical framework on cross-sectional analysis of uniform beams with arbitrary cross-sections. This framework is based on two concepts: decomposition of the rotation tensor and the variational-asymptotic method. Allowance of arbitrary materials and geometries in the cross-section is from discretization of the warping field by finite elements. By this approach, dimensional reduction from three-dimensional elasticity is performed rigorously and the sectional strain energy is derived to be asymptotically-correct. Elastic stiffness matrices are derived for inputs into the global beam analysis. Recovery relations for the displacement, stress, and strain fields are also derived with care to be consistent with the energy. Spanwise nonuniformity effects appear in the form of pointwise and sectionwise derivatives, which are approximated by finite differences. The formulation also accounts for the effects of spanwise variations in initial twist and/or curvature. A linearly tapered isotropic strip is analyzed to demonstrate spanwise nonuniformity effects on the cross-sectional analysis. The analysis is performed analytically by the variational-asymptotic method. Results from beam theory are validated against solutions from plane stress elasticity. These results demonstrate that spanwise nonuniformity effects become significant as the rate at which the cross-sections vary increases. The modeling of transverse shear modes of deformation is accomplished by transforming the strain energy into generalized Timoshenko form. Approximations in this transformation procedure from previous works, when applied to uniform beams, are identified. The approximations are not used in the present work so as to retain more accuracy. Comparison of present results with those previously published shows that these approximations sometimes change the results measurably and thus are inappropriate. Static and dynamic results, from the global beam analysis, are calculated to show the differences between using stiffness constants from previous works and the present work. As a form of validation of the transformation procedure, calculations from the global beam analysis of initially twisted isotropic beams from using curvilinear coordinate axes featuring twist are shown to be equivalent to calculations using Cartesian coordinates.
19

Gradient-Based Optimization of Highly Flexible Aeroelastic Structures

McDonnell, Taylor G. 21 April 2023 (has links) (PDF)
Design optimization is a method that can be used to automate the design process to obtain better results. When applied to aeroelastic structures, design optimization often leads to the creation of highly flexible aeroelastic structures. There are, however, a number of conventional design procedures that must be modified when dealing with highly flexible aeroelastic structures. First, the deformed geometry must be the baseline for weight, structural, and stability analyses. Second, potential couplings between aeroelasticity and rigid-body dynamics must be considered. Third, dynamic analyses must be modified to handle large nonlinear displacements. These modifications to the conventional design process significantly increase the difficulty of developing an optimization framework appropriate for highly flexible aeroelastic structures. As a result, when designing these structures, often either gradient-free optimization is performed (which limits the optimization to relatively few design variables) or optimization is simply omitted from the design process. Both options significantly decrease the design exploration capabilities of a designer compared to a scenario in which gradient-based optimization is used. This dissertation therefore presents various contributions that allow gradient-based optimization to be more easily used to optimize highly flexible aeroelastic structures. One of our primary motivations for developing these capabilities is to accurately capture the design constraints of solar-regenerative high-altitude long-endurance (SR-HALE) aircraft. In this dissertation, we therefore present a SR-HALE aircraft optimization framework which accounts for the peculiarities of structurally flexible aircraft while remaining suitable for use with gradient-based optimization. These aircraft tend to be extremely large and light, which often leads to significant amounts of structural flexibility. Using this optimization framework, we design an aircraft that is capable of flying year-round at \SI{35}{\degree} latitude at \SI{18}{\kilo\meter} above sea level. We subject this aircraft to a number of constraints including energy capture, energy storage, material failure, local buckling, stall, static stability, and dynamic stability constraints. Critically, these constraints were designed to accurately model the actual design requirements of SR-HALE aircraft, rather than to provide a rough approximation of them. To demonstrate the design exploration capabilities of this framework, we also performed several parameters sweeps to determine optimal design sensitivities to altitude, latitude, battery specific energy, solar efficiency, avionics and payload power requirements, and minimum design velocity. Through this optimization framework, we demonstrate both the potential of gradient-based optimization applied to highly flexible aeroelastic structures and the challenges associated with it. One challenge associated with the gradient-based optimization of highly flexible aeroelastic structures, is the ability to accurately, efficiently, and reliably model the large deflections of these structures in gradient-based optimization frameworks. To enable large-scale optimization involving structural models with large deflections to be performed more easily, we present a finite-element implementation of geometrically exact beam theory which is designed specifically for gradient-based optimization. A key feature of this implementation of geometrically exact beam theory is its compatibility with forward and reverse-mode automatic differentiation, which allows accurate design sensitivities to be obtained with minimal development effort. Another key feature is its native support for unsteady adjoint sensitivity analysis, which allows design sensitivities to be obtained efficiently from time-marching simulations. Other features are also presented that build upon previous implementations of geometrically exact beam theory, including a singularity-free rotation parameterization based on Wiener-Milenkovi\'c parameters, an implementation of stiffness-proportional structural damping using a discretized form of the compatibility equations, and a reformulation of the equations of motion for geometrically exact beam theory from a fully implicit index-1 differential algebraic equation to a semi-explicit index-1 differential algebraic equation. Several examples are presented which verify the utility and validity of each of these features. Another challenge associated with the gradient-based optimization of highly flexible aeroelastic structures is the ability to reliably track and constrain individual dynamic stability modes across the design iterations of an optimization framework. To facilitate the development of mode-specific dynamic stability constraints in gradient-based optimization frameworks we develop a mode tracking method that uses an adaptive step size in order to maintain an arbitrarily high degree of confidence in mode correlations. This mode tracking method is then applied to track the modes of a linear two-dimensional aeroelastic system and a nonlinear three-dimensional aeroelastic system as velocity is increased. When used in a gradient-based optimization framework, this mode tracking method has the potential to allow continuous dynamic stability constraints to be constructed without constraint aggregation. It also has the potential to allow the stability and shape of specific modes to be constrained independently. Finally, to facilitate the development and use of highly flexible aeroelastic systems for use in gradient-based optimization frameworks, we introduce a general methodology for coupling aerodynamic and structural models together to form modular monolithic aeroelastic systems. We also propose efficient methods for computing the Jacobians of these coupled systems without significantly increasing the amount of time necessary to construct these systems. For completeness we also discuss how to ensure that the resulting system of equations constitutes a set of first-order index-1 differential algebraic equations. We then derive direct and adjoint sensitivities for these systems which are compatible with automatic differentiation so that derivatives for gradient-based optimization can be obtained with minimal development effort.
20

Three-dimensional modeling of rigid pavement

Beegle, David J. January 1998 (has links)
No description available.

Page generated in 0.1297 seconds