• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 9
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 20
  • 19
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The geomorphology of Southeast Australian mountain streams

Thompson, Chris J., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2006 (has links)
This thesis is a study of the morphology and sediment transport dynamics of mountain streams in southeast Australia. Mountain streams represent important geomorphological and ecological systems in Australia which have hitherto been poorly studied. The variability of mountain stream reach morphology was investigated at the regional scale using topographical surveys and sediment sampling techniques. Study sites were stratified by slope and local lithology. Eight channel-morphologies including Bedrock, Cascade, Step-pool, Planebed, Pool-Riffle, Cascade-pool, Riffle-step and Infilled, were identified using an objective statistical approach. Overall, channel types were found to correspond to existing reach-scale mountain stream templates. Five morphologies were associated with a specific lithology type which controlled the size and shape of grains supplied to the channels. Differences in coarse sediment transport processes between morphologies were investigated using stream monitoring techniques and Optically Stimulated Luminescence (OSL) dating. Monitoring results from a 3 year period indicated that channel beds are resistant to entrainment with shear stress thresholds for bedload transport ranging between 64 to 74 N/m2. Transport of reach median grain sizes requires floods that exceed bankfull discharge. Existing competence equations were found to over-predict the hydraulic driving force and consequently, a modified entrainment model was used to account for the regional channel characteristics. OSL dating was investigated as a tool to provide data on long-term sediment transport processes. Minimum age model results from the OSL dates show overall agreement with a selected entrainment model, and indicate differences in sediment transport dynamics between some reach morphology types. A regime model was used to quantify the physical domains of different channel morphologies. Limitations of the model were overcome by modifying the sediment supply surrogate to better reflect the dominant transported bedload size. Morphology types were delineated according to different sediment transport capacity-sediment supply domains. The distribution of channel morphology types within a series of catchments in southeast Australia was modelled within a GIS platform using the diagnostics of reach morphology derived from this study. The model provides a conceptual framework to evaluate the potential link between channel form, potential habitat diversity and aquatic biodiversity within the channel network in mountain streams.
22

The geomorphology of Southeast Australian mountain streams

Thompson, Chris J., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2006 (has links)
This thesis is a study of the morphology and sediment transport dynamics of mountain streams in southeast Australia. Mountain streams represent important geomorphological and ecological systems in Australia which have hitherto been poorly studied. The variability of mountain stream reach morphology was investigated at the regional scale using topographical surveys and sediment sampling techniques. Study sites were stratified by slope and local lithology. Eight channel-morphologies including Bedrock, Cascade, Step-pool, Planebed, Pool-Riffle, Cascade-pool, Riffle-step and Infilled, were identified using an objective statistical approach. Overall, channel types were found to correspond to existing reach-scale mountain stream templates. Five morphologies were associated with a specific lithology type which controlled the size and shape of grains supplied to the channels. Differences in coarse sediment transport processes between morphologies were investigated using stream monitoring techniques and Optically Stimulated Luminescence (OSL) dating. Monitoring results from a 3 year period indicated that channel beds are resistant to entrainment with shear stress thresholds for bedload transport ranging between 64 to 74 N/m2. Transport of reach median grain sizes requires floods that exceed bankfull discharge. Existing competence equations were found to over-predict the hydraulic driving force and consequently, a modified entrainment model was used to account for the regional channel characteristics. OSL dating was investigated as a tool to provide data on long-term sediment transport processes. Minimum age model results from the OSL dates show overall agreement with a selected entrainment model, and indicate differences in sediment transport dynamics between some reach morphology types. A regime model was used to quantify the physical domains of different channel morphologies. Limitations of the model were overcome by modifying the sediment supply surrogate to better reflect the dominant transported bedload size. Morphology types were delineated according to different sediment transport capacity-sediment supply domains. The distribution of channel morphology types within a series of catchments in southeast Australia was modelled within a GIS platform using the diagnostics of reach morphology derived from this study. The model provides a conceptual framework to evaluate the potential link between channel form, potential habitat diversity and aquatic biodiversity within the channel network in mountain streams.
23

The geomorphology of Southeast Australian mountain streams

Thompson, Chris J., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2006 (has links)
This thesis is a study of the morphology and sediment transport dynamics of mountain streams in southeast Australia. Mountain streams represent important geomorphological and ecological systems in Australia which have hitherto been poorly studied. The variability of mountain stream reach morphology was investigated at the regional scale using topographical surveys and sediment sampling techniques. Study sites were stratified by slope and local lithology. Eight channel-morphologies including Bedrock, Cascade, Step-pool, Planebed, Pool-Riffle, Cascade-pool, Riffle-step and Infilled, were identified using an objective statistical approach. Overall, channel types were found to correspond to existing reach-scale mountain stream templates. Five morphologies were associated with a specific lithology type which controlled the size and shape of grains supplied to the channels. Differences in coarse sediment transport processes between morphologies were investigated using stream monitoring techniques and Optically Stimulated Luminescence (OSL) dating. Monitoring results from a 3 year period indicated that channel beds are resistant to entrainment with shear stress thresholds for bedload transport ranging between 64 to 74 N/m2. Transport of reach median grain sizes requires floods that exceed bankfull discharge. Existing competence equations were found to over-predict the hydraulic driving force and consequently, a modified entrainment model was used to account for the regional channel characteristics. OSL dating was investigated as a tool to provide data on long-term sediment transport processes. Minimum age model results from the OSL dates show overall agreement with a selected entrainment model, and indicate differences in sediment transport dynamics between some reach morphology types. A regime model was used to quantify the physical domains of different channel morphologies. Limitations of the model were overcome by modifying the sediment supply surrogate to better reflect the dominant transported bedload size. Morphology types were delineated according to different sediment transport capacity-sediment supply domains. The distribution of channel morphology types within a series of catchments in southeast Australia was modelled within a GIS platform using the diagnostics of reach morphology derived from this study. The model provides a conceptual framework to evaluate the potential link between channel form, potential habitat diversity and aquatic biodiversity within the channel network in mountain streams.
24

The geomorphology of Southeast Australian mountain streams

Thompson, Chris J., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2006 (has links)
This thesis is a study of the morphology and sediment transport dynamics of mountain streams in southeast Australia. Mountain streams represent important geomorphological and ecological systems in Australia which have hitherto been poorly studied. The variability of mountain stream reach morphology was investigated at the regional scale using topographical surveys and sediment sampling techniques. Study sites were stratified by slope and local lithology. Eight channel-morphologies including Bedrock, Cascade, Step-pool, Planebed, Pool-Riffle, Cascade-pool, Riffle-step and Infilled, were identified using an objective statistical approach. Overall, channel types were found to correspond to existing reach-scale mountain stream templates. Five morphologies were associated with a specific lithology type which controlled the size and shape of grains supplied to the channels. Differences in coarse sediment transport processes between morphologies were investigated using stream monitoring techniques and Optically Stimulated Luminescence (OSL) dating. Monitoring results from a 3 year period indicated that channel beds are resistant to entrainment with shear stress thresholds for bedload transport ranging between 64 to 74 N/m2. Transport of reach median grain sizes requires floods that exceed bankfull discharge. Existing competence equations were found to over-predict the hydraulic driving force and consequently, a modified entrainment model was used to account for the regional channel characteristics. OSL dating was investigated as a tool to provide data on long-term sediment transport processes. Minimum age model results from the OSL dates show overall agreement with a selected entrainment model, and indicate differences in sediment transport dynamics between some reach morphology types. A regime model was used to quantify the physical domains of different channel morphologies. Limitations of the model were overcome by modifying the sediment supply surrogate to better reflect the dominant transported bedload size. Morphology types were delineated according to different sediment transport capacity-sediment supply domains. The distribution of channel morphology types within a series of catchments in southeast Australia was modelled within a GIS platform using the diagnostics of reach morphology derived from this study. The model provides a conceptual framework to evaluate the potential link between channel form, potential habitat diversity and aquatic biodiversity within the channel network in mountain streams.
25

The geomorphology of Southeast Australian mountain streams

Thompson, Chris J., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2006 (has links)
This thesis is a study of the morphology and sediment transport dynamics of mountain streams in southeast Australia. Mountain streams represent important geomorphological and ecological systems in Australia which have hitherto been poorly studied. The variability of mountain stream reach morphology was investigated at the regional scale using topographical surveys and sediment sampling techniques. Study sites were stratified by slope and local lithology. Eight channel-morphologies including Bedrock, Cascade, Step-pool, Planebed, Pool-Riffle, Cascade-pool, Riffle-step and Infilled, were identified using an objective statistical approach. Overall, channel types were found to correspond to existing reach-scale mountain stream templates. Five morphologies were associated with a specific lithology type which controlled the size and shape of grains supplied to the channels. Differences in coarse sediment transport processes between morphologies were investigated using stream monitoring techniques and Optically Stimulated Luminescence (OSL) dating. Monitoring results from a 3 year period indicated that channel beds are resistant to entrainment with shear stress thresholds for bedload transport ranging between 64 to 74 N/m2. Transport of reach median grain sizes requires floods that exceed bankfull discharge. Existing competence equations were found to over-predict the hydraulic driving force and consequently, a modified entrainment model was used to account for the regional channel characteristics. OSL dating was investigated as a tool to provide data on long-term sediment transport processes. Minimum age model results from the OSL dates show overall agreement with a selected entrainment model, and indicate differences in sediment transport dynamics between some reach morphology types. A regime model was used to quantify the physical domains of different channel morphologies. Limitations of the model were overcome by modifying the sediment supply surrogate to better reflect the dominant transported bedload size. Morphology types were delineated according to different sediment transport capacity-sediment supply domains. The distribution of channel morphology types within a series of catchments in southeast Australia was modelled within a GIS platform using the diagnostics of reach morphology derived from this study. The model provides a conceptual framework to evaluate the potential link between channel form, potential habitat diversity and aquatic biodiversity within the channel network in mountain streams.
26

The geomorphology of Southeast Australian mountain streams

Thompson, Chris J., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2006 (has links)
This thesis is a study of the morphology and sediment transport dynamics of mountain streams in southeast Australia. Mountain streams represent important geomorphological and ecological systems in Australia which have hitherto been poorly studied. The variability of mountain stream reach morphology was investigated at the regional scale using topographical surveys and sediment sampling techniques. Study sites were stratified by slope and local lithology. Eight channel-morphologies including Bedrock, Cascade, Step-pool, Planebed, Pool-Riffle, Cascade-pool, Riffle-step and Infilled, were identified using an objective statistical approach. Overall, channel types were found to correspond to existing reach-scale mountain stream templates. Five morphologies were associated with a specific lithology type which controlled the size and shape of grains supplied to the channels. Differences in coarse sediment transport processes between morphologies were investigated using stream monitoring techniques and Optically Stimulated Luminescence (OSL) dating. Monitoring results from a 3 year period indicated that channel beds are resistant to entrainment with shear stress thresholds for bedload transport ranging between 64 to 74 N/m2. Transport of reach median grain sizes requires floods that exceed bankfull discharge. Existing competence equations were found to over-predict the hydraulic driving force and consequently, a modified entrainment model was used to account for the regional channel characteristics. OSL dating was investigated as a tool to provide data on long-term sediment transport processes. Minimum age model results from the OSL dates show overall agreement with a selected entrainment model, and indicate differences in sediment transport dynamics between some reach morphology types. A regime model was used to quantify the physical domains of different channel morphologies. Limitations of the model were overcome by modifying the sediment supply surrogate to better reflect the dominant transported bedload size. Morphology types were delineated according to different sediment transport capacity-sediment supply domains. The distribution of channel morphology types within a series of catchments in southeast Australia was modelled within a GIS platform using the diagnostics of reach morphology derived from this study. The model provides a conceptual framework to evaluate the potential link between channel form, potential habitat diversity and aquatic biodiversity within the channel network in mountain streams.
27

The geomorphology of Southeast Australian mountain streams

Thompson, Chris J., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2006 (has links)
This thesis is a study of the morphology and sediment transport dynamics of mountain streams in southeast Australia. Mountain streams represent important geomorphological and ecological systems in Australia which have hitherto been poorly studied. The variability of mountain stream reach morphology was investigated at the regional scale using topographical surveys and sediment sampling techniques. Study sites were stratified by slope and local lithology. Eight channel-morphologies including Bedrock, Cascade, Step-pool, Planebed, Pool-Riffle, Cascade-pool, Riffle-step and Infilled, were identified using an objective statistical approach. Overall, channel types were found to correspond to existing reach-scale mountain stream templates. Five morphologies were associated with a specific lithology type which controlled the size and shape of grains supplied to the channels. Differences in coarse sediment transport processes between morphologies were investigated using stream monitoring techniques and Optically Stimulated Luminescence (OSL) dating. Monitoring results from a 3 year period indicated that channel beds are resistant to entrainment with shear stress thresholds for bedload transport ranging between 64 to 74 N/m2. Transport of reach median grain sizes requires floods that exceed bankfull discharge. Existing competence equations were found to over-predict the hydraulic driving force and consequently, a modified entrainment model was used to account for the regional channel characteristics. OSL dating was investigated as a tool to provide data on long-term sediment transport processes. Minimum age model results from the OSL dates show overall agreement with a selected entrainment model, and indicate differences in sediment transport dynamics between some reach morphology types. A regime model was used to quantify the physical domains of different channel morphologies. Limitations of the model were overcome by modifying the sediment supply surrogate to better reflect the dominant transported bedload size. Morphology types were delineated according to different sediment transport capacity-sediment supply domains. The distribution of channel morphology types within a series of catchments in southeast Australia was modelled within a GIS platform using the diagnostics of reach morphology derived from this study. The model provides a conceptual framework to evaluate the potential link between channel form, potential habitat diversity and aquatic biodiversity within the channel network in mountain streams.
28

Mobilité des sédiments fluviaux grossiers dans les systèmes fortement anthropisés : éléments pour la gestion de la basse vallée de la Durance / Bed mobility in highly modified fluvial systems : keys to understanding for river management (Durance River, South-Eastern France)

Chapuis, Margot 29 May 2012 (has links)
La Durance est une large rivière méditerranéenne à charge grossière et à lit divagant. Le fonctionnement hydro-sédimentaire de son bassin versant a été profondément modifié par la mise en place d'aménagements hydro-électriques et par les extractions de graviers, qui ont entraîné une rétraction de sa bande active et une incision marquée de son lit. Ces évolutions morphologiques correspondent à des enjeux majeurs en termes de gestion du territoire en moyenne et basse Durance, du fait de la nécessité du maintien d'une capacité d'écoulement du lit en crue, et de la mobilité latérale du lit, souvent incompatible avec l'occupation de la vallée. Cette thèse, basée sur la collecte de données de terrain, vise à développer un schéma de fonctionnement du transport sédimentaire dans les rivières à charge grossière de grande largeur, en intégrant les différentes échelles spatiales (et donc temporelles). Elle a également pour objectif de donner des clefs de compréhension pour la gestion des flux sédimentaires en Durance. Les mécanismes de la mobilité des particules sédimentaires et des formes fluviales sont étudiés dans une démarche ascendante de reformulation scientifique de questionnements opérationnels. / The Durance River (South-Eastern France) is a large and steep wandering gravel-bed river, deeply impacted by gravel mining and flow diversion in its whole catchment area. The Durance River is characterized by a sediment deficit that led to a reduction of active channel width and river bed degradation. These lateral and vertical dynamics lead to important issues in terms of landscape management, because of (i) maintaining the bed hydraulic capacity to evacuate flood discharges and (ii) planform evolution of the river that conflicts with landscape use. This field-based thesis aims at developing a functioning scheme of bedload transport in large gravel bed rivers at various spatial (and consequently temporal) scales and gives keys to understanding for sediment fluxes management on the Durance River. Particle and bedform mobility mechanisms are studied with a scientific approach closely linked to management issues.
29

Caractéristiques des structures turbulentes de l'écoulement et du transport en charge de fond en rivière à lit de graviers lors de la montée d'une crue

Chaput-Desrochers, Laurence 03 1900 (has links)
En rivière à lit de graviers, le transport des sédiments en charge de fond est un processus intermittent qui dépend de plusieurs variables du système fluvial dont la prédiction est encore aujourd’hui inexacte. Les modèles disponibles pour prédire le transport par charriage utilisent des variables d’écoulement moyen et la turbulence n’est généralement pas considérée malgré que les tourbillons contenus dans les écoulements possèdent une quantité d’énergie importante. L’utilisation de nouvelles approches pour étudier la problématique du transport par charriage pourrait nous permettre d’améliorer notre connaissance de ce processus déterminant en rivière alluviale. Dans ce mémoire, nous documentons ces composantes de la dynamique fluviale dans un cours d’eau graveleux en période de crue. Les objectifs du projet de recherche sont : 1) d’examiner l’effet du débit sur les variables turbulentes et les caractéristiques des structures turbulentes cohérentes, 2) d’investiguer l’effet du débit sur les caractéristiques des événements de transport de sédiments individuels détectés à l’aide d’un nouvel algorithme développé et testé et 3) de relier les caractéristiques de l’écoulement turbulent aux événements de transport de sédiments individuels. Les données de turbulence montrent qu’à haut niveau d’eau, l’écoulement décéléré est peu cohérent et a une turbulence plus isotrope où les structures turbulentes cohérentes sont de courte durée. Ces observations se distinguent de celles faites à faible niveau d’eau, en écoulement accéléré, où la plus grande cohérence de l’écoulement correspond à ce qui est généralement observé dans les écoulements uniformes en rivières graveleuses. Les distributions de fréquence des variables associées aux événements de transport individuel (intensité de transport moyenne, durée d’événement et intervalle entre événements successifs) ont des formes différentes pour chaque intensité de crue. À haut niveau d’eau, le transport est moins intermittent qu’à faible débit où les événements rares caractérisent davantage les distributions. L’accélération de l’écoulement à petite échelle de temps joue un rôle positif sur le transport, mais surtout lorsque la magnitude de la crue mobilisatrice est en dessous du niveau plein bord. Les résultats de l’étude montrent que les caractéristiques de la turbulence ainsi que les liens complexes entre l’écoulement et le transport par charriage sont fonction du débit. / In gravel-bed rivers, bedload transport is an intermittent process related to many variables of the fluvial system whose prediction is still unreliable. Available models for prediction of bedload transport use mean hydraulics variables and generally do not consider turbulence even if coherent turbulent flow structures in rivers are highly energetic. New approaches to bedload transport investigation can shed light on this very important process in alluvial channels. In this thesis, we document these components of the fluvial system in a gravel-bed river during a flood. The objectives of the research are to: 1) investigate the effect of discharge on turbulent variables and turbulent coherent flow structures, 2) investigate the effect of discharge on bedload transport events statistics detected with a newly developed and tested algorithm and 3) link turbulent flow characteristics to individual bedload transport events. Turbulence data shows that at high water level, the decelerated flow has a low coherency and an isotropic turbulence where coherent turbulent flow structures have a short duration. These observations differ from those made at low water level where the accelerated flow corresponds to what is generally observed in uniform flows of gravelly channels. Frequency distributions of bedload transport events variables (mean bedload transport rate, event duration and time interval between successive bedload events) have different shapes for the two investigated flood intensity. At high water level, bedload transport is less intermittent that at low discharge where distributions are more characterised by rare events. Flow velocity acceleration on a short time scale has a positive effect on bedload transport, but mainly when the mobilizing flood is under bankfull stage. Results from the study show that turbulence properties and complex relationships between turbulence and bedload transport are a function of discharge.
30

Caractéristiques des structures turbulentes de l'écoulement et du transport en charge de fond en rivière à lit de graviers lors de la montée d'une crue

Chaput-Desrochers, Laurence 03 1900 (has links)
En rivière à lit de graviers, le transport des sédiments en charge de fond est un processus intermittent qui dépend de plusieurs variables du système fluvial dont la prédiction est encore aujourd’hui inexacte. Les modèles disponibles pour prédire le transport par charriage utilisent des variables d’écoulement moyen et la turbulence n’est généralement pas considérée malgré que les tourbillons contenus dans les écoulements possèdent une quantité d’énergie importante. L’utilisation de nouvelles approches pour étudier la problématique du transport par charriage pourrait nous permettre d’améliorer notre connaissance de ce processus déterminant en rivière alluviale. Dans ce mémoire, nous documentons ces composantes de la dynamique fluviale dans un cours d’eau graveleux en période de crue. Les objectifs du projet de recherche sont : 1) d’examiner l’effet du débit sur les variables turbulentes et les caractéristiques des structures turbulentes cohérentes, 2) d’investiguer l’effet du débit sur les caractéristiques des événements de transport de sédiments individuels détectés à l’aide d’un nouvel algorithme développé et testé et 3) de relier les caractéristiques de l’écoulement turbulent aux événements de transport de sédiments individuels. Les données de turbulence montrent qu’à haut niveau d’eau, l’écoulement décéléré est peu cohérent et a une turbulence plus isotrope où les structures turbulentes cohérentes sont de courte durée. Ces observations se distinguent de celles faites à faible niveau d’eau, en écoulement accéléré, où la plus grande cohérence de l’écoulement correspond à ce qui est généralement observé dans les écoulements uniformes en rivières graveleuses. Les distributions de fréquence des variables associées aux événements de transport individuel (intensité de transport moyenne, durée d’événement et intervalle entre événements successifs) ont des formes différentes pour chaque intensité de crue. À haut niveau d’eau, le transport est moins intermittent qu’à faible débit où les événements rares caractérisent davantage les distributions. L’accélération de l’écoulement à petite échelle de temps joue un rôle positif sur le transport, mais surtout lorsque la magnitude de la crue mobilisatrice est en dessous du niveau plein bord. Les résultats de l’étude montrent que les caractéristiques de la turbulence ainsi que les liens complexes entre l’écoulement et le transport par charriage sont fonction du débit. / In gravel-bed rivers, bedload transport is an intermittent process related to many variables of the fluvial system whose prediction is still unreliable. Available models for prediction of bedload transport use mean hydraulics variables and generally do not consider turbulence even if coherent turbulent flow structures in rivers are highly energetic. New approaches to bedload transport investigation can shed light on this very important process in alluvial channels. In this thesis, we document these components of the fluvial system in a gravel-bed river during a flood. The objectives of the research are to: 1) investigate the effect of discharge on turbulent variables and turbulent coherent flow structures, 2) investigate the effect of discharge on bedload transport events statistics detected with a newly developed and tested algorithm and 3) link turbulent flow characteristics to individual bedload transport events. Turbulence data shows that at high water level, the decelerated flow has a low coherency and an isotropic turbulence where coherent turbulent flow structures have a short duration. These observations differ from those made at low water level where the accelerated flow corresponds to what is generally observed in uniform flows of gravelly channels. Frequency distributions of bedload transport events variables (mean bedload transport rate, event duration and time interval between successive bedload events) have different shapes for the two investigated flood intensity. At high water level, bedload transport is less intermittent that at low discharge where distributions are more characterised by rare events. Flow velocity acceleration on a short time scale has a positive effect on bedload transport, but mainly when the mobilizing flood is under bankfull stage. Results from the study show that turbulence properties and complex relationships between turbulence and bedload transport are a function of discharge.

Page generated in 0.0809 seconds