• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 9
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 20
  • 19
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting entrainment of mixed size sediment grains by probabilistic methods

Cunningham, Gavin James January 2000 (has links)
The bedload transport of mixed size sediment is an important process in river engineering. Bedload transport controls channel stability and has a significant bearing on the hydraulic roughness of the channel. The prediction of bedload transport traditionally relies upon defining some critical value of fluid force above which particles of a particular diameter are assumed to be put into transport. The suggestion here is that the transport of bed material is size dependent with large grains being more difficult to remove from the bed surface than small grains and that all grains of the same size start to move under identical conditions. While it is relatively straightforward to assess the forces required to engender transport in a bed of uniform size grains, it is not so simple where there are a number of different grain sizes present. Multitudinous experimental studies have revealed that where there are a number of grain sizes present, large grains tend to become mobilised under lower fluid forces and small grains mobilised under higher fluid forces than those required for beds of uniform material. These results led to the development of so-called hiding functions which are used to model the variation of particle mobility with its relative size within the mixture. These functions derive their name from the tendency of large grains to shelter smaller grains from the action of the flow. Determining the relative mobility of each fraction in a mixture under given hydraulic conditions is the key to predicting how the composition of the bed load will relate to that of the bed surface material. Experiments were carried out in a rectangular, glass sided channel, in a sediment recirculation mode, under varying hydraulic conditions with a set of six different sediment mixtures. Laser Doppler Anemometry (LDA) was used to attain instantaneous velocity measurements at a number of locations in the flow. A Laser Displacement Meter was used to measure the detailed topography of small sections of the bed surface. Novel analysis techniques facilitated the determination of the grain size distribution of the bed surface by a grid-by-number method. The minimum force required to entrain each grain could also be estimated by a grain pivoting analysis. This information represents the resistance of the bed grains to erosion by flowing water. With the critical conditions for the bed grains known, it is possible to estimate the proportion of each fraction entrained from the bed surface under given hydraulic conditions. To estimate the bedload composition it is first necessary to scale by the proportion each size comprises on the bed surface and then, by a function of grain diameter to account for size dependency of travel velocity. For mean hydraulic conditions the proportion of the bed mobilised can be simply determined by inspection of a cumulative distribution of critical conditions. In reality, although it may be possible to entrain some grains at the mean velocity/shear stress, the majority of transport may be anticipated to occur during high magnitude events. Turbulence may be incorporated by adopting a probabilistic approach to the prediction of grain entrainment. By considering the joint probability distribution of bed shear stress and critical shear stress, one may attain the probability of grain entrainment. Comparison of the probability of erosion of each fraction facilitates a prediction of the bedload composition. Results show that the probabilistic approach provides a significant improvement over deterministic methods for the prediction of bedload composition.
2

Validation of Observed Bedload Transport Pathways Using Morphodynamic Modelling

Mineault-Guitard, Alexandre January 2016 (has links)
Braiding is a mesmerizing phenomenon since flow and sediment transport interact and are able to change the morphology of a channel in a rapid and complex fashion. Conventional two-dimensional morphodynamic models estimate bedload distribution using shear stress distribution. However, it is unclear if the use of such shear stress distributions is relevant or applicable for all situations when using two-dimensional morphodynamic modelling. This thesis strives to investigate whether shear stress distributions are useful to predict bedload transport pathways. This study focuses upon prediction of bedload transport pathways using a morphodynamic model (Delft3D) of an anabranch of the Rees River (New Zealand). Observed bedload transport pathways were compared to modelled bedload transport pathways in an attempt to validate the predictive ability of the model. Results show that there is a significant correlation between predicted bedload transport pathways and the apparent bedload transport pathways derived from the field measurements. Furthermore, bedload transport predictions were in good agreement with observed data in areas where the model’s predictions of high shear stress were comparable to field observations. However, substantial bedload transport predictions in low shear stress areas were not adequately captured by the model, suggesting that the observed pathways were not due to high shear stress, but rather to other sediment supply sources.
3

上・下流境界条件の変化による直線砂礫流路の側岸侵食を伴う河床低下に関する研究

GOTO, Takaomi, 北村, 忠紀, 後藤, 孝臣, KITAMURA, Tadanori, 辻本, 哲郎, TSUJIMOTO, Tetsuro 08 1900 (has links)
No description available.
4

Foraging fish as zoogeomorphic agents : their effects on the structure and composition of gravel-bed river sediments with implications for bed material transport

Pledger, Andrew G. January 2015 (has links)
The plants and animals that inhabit river channels may act as zoogeomorphic agents affecting the nature and rates of sediment recruitment, transport and deposition. The impact of benthic-feeding fish, which disturb bed material sediments during their search for food, has received little attention, even though benthic feeding species are widespread in rivers and may collectively expend significant amounts of energy foraging across the bed. A series of experiments were conducted to investigate the impacts of benthic feeding fish on the structure and composition of gravel-bed river sediments, and the implications for bed material transport. An ex-situ experiment was conducted to investigate the impact of a benthic feeding fish (European Barbel Barbus barbus) on particle displacements, bed sediment structures, gravel entrainment and transport fluxes. In a laboratory flume, changes in bed surface topography were measured and grain displacements examined when an imbricated, water-worked bed of 5.6-16 mm gravels was exposed to feeding juvenile Barbel. For substrates that had been exposed to feeding fish and control substrates which had not, grain entrainment rates and bedload fluxes were measured under a moderate transport regime. On average, approximately 37% of the substrate, by area, was modified by foraging fish during a four-hour treatment period, resulting in increased microtopographic roughness and reduced particle imbrication. Structural changes caused by fish increased bed load flux by 60% under entrainment flows, whilst on average the total number of grains transported during the entrainment phase was 82% higher from substrates that had been disturbed by Barbel. An ex-situ experiment utilising Barbel and Chub Leuciscus cephalus extended this initial study by considering the role of fish size and species as controls of sediment disturbance by foraging. Increasing the size of Barbel had a significant effect on measured disturbance and bedload transport. Specifically, the area of disturbed substrate, foraging depth, microtopographic roughness and sediment structure all increased as functions of fish size, as did bedload flux and total transported mass. In a comparison of the foraging effects of like-sized Barbel and Chub 8-10 in length, Barbel foraged a larger area of the riverbed and had a greater impact on microtopographic roughness and sediment structure. Foraging by both species was associated with increased sediment transport, but the bed load flux after foraging by Barbel was 150% higher than that following foraging by Chub and the total transported mass of sediment was 98% greater. An in-situ experiment quantified the effects of foraging fish, primarily Cyprinids (specifically Barbel and Chub), on gravel-river bed sediment structures, surface grain-size distributions, sediment transport fluxes and grain entrainment in the River Idle, Nottinghamshire, UK. This was achieved by installing large experimental sediment trays seeded with food at typical densities. The experiments yielded data about 1) topographic and structural differences between pre- and post-feeding substrates using DEMs interpolated from laser scans, 2) modifications to surface and sub-surface grain-size distributions as a function of fish foraging and 3) differences in sediment entrainment from water-worked substrates exposed to feeding fish and control substrates, without fish. Small sections of the substrate trays were recovered in tact from the field and for substrates that had been exposed to feeding fish and control substrates which had not, grain entrainment rates and bedload fluxes were measured under a moderate transport regime in the laboratory. On average, approximately 74% of the substrate, by area, was modified by foraging fish during a twelve-hour period, resulting in increased microtopographic roughness and substrate coarsening which had significant implications for bed material transport during the steady entrainment flow. Together, results from these experiments indicate that by increasing surface microtopography, modifying the composition of fluvial substrates and undoing the naturally stable structures produced by water working, foraging can influence sediment transport dynamics, predominately by increasing the mobility of river bed materials. The implication of this result is that by influencing the quantity of available, transportable sediment and entrainment thresholds, benthic feeding may affect sediment transport fluxes in gravel-bed rivers. In addition, three discrete studies were performed alongside the core experiments described above. A quantitative examination of habitat conditions favoured by feeding Barbel was conducted in the River Idle (Nottinghamshire, UK) which served to supplement existing literature pertaining to Barbel ecology, and inform experimental design during the core experiments. Two further studies considered the potential importance of foraging as a zoogeomorphic activity in terms of spatial extent, at a variety of scales, thereby extending core experiments to larger spatial scales in-situ.
5

The disturbance of fluvial gravel substrates by signal crayfish (Pacifastacus leniusculus) and the implications for coarse sediment transport in gravel-bed rivers

Johnson, Matthew January 2011 (has links)
Signal crayfish are an internationally widespread invasive species that can have important detrimental ecological impacts. This thesis aims to determine whether signal crayfish have the potential to also impact the physical environment in rivers. A series of experiments were undertaken in purpose-built still-water aquaria using a laser scanner to obtain Digital Elevation Models (DEMs) of narrowly-graded gravel surfaces before and after exposure to crayfish. The difference between DEMs was used to quantify volumetric changes in surface topography due to crayfish activity. Two distinct types of topographic change were identified. The first was the construction of pits and mounds which resulted in an increase in surface roughness and grain exposure. The second was the rearrangement of surface material caused by crayfish brushing past grains when walking and foraging, reorientating grains and altering friction angles. A series of 80 flume runs were undertaken to quantify alterations made by crayfish to water-worked, as well as loose, gravel substrates at low velocity flows. Crayfish significantly altered the structure of water-worked substrates, reversing the imbrication of surface grains to a more random arrangement. Surfaces were entrained at a relatively high velocity flow subsequent to crayfish activity in order to directly link topographic and structural alterations to substrate stability. Nearly twice as many grains were mobilised from surfaces which had been disturbed by crayfish in comparison to control surfaces that were not exposed to crayfish. A field investigation aimed to determine the potential significance of the geomorphic impact of crayfish in rivers. Signal crayfish were tracked through a 20 m reach of a small, lowland alluvial river for 150 days using a Passive Integrated Transponder (PIT) system. Crayfish were active throughout the channel, although their activity became limited as water temperature dropped and flow stage increased. Substrate was not an important determinant of crayfish activity at this scale. Instead, crayfish tended to be found along the inner bank of a meander bend where there was a substantial cover of macrophytes. Consequently, signal crayfish were active for extended periods on substrates of a similar size to those that they could disturb in flume experiments. These results suggest that signal crayfish could have important geomorphic effects in rivers, disturbing bed structures and increasing the mobility of coarse material. This may have important implications for both the management of some rivers and benthic organisms that reside on the river bed.
6

Etude expérimentale de la dynamique sédimentaire d'un système à forte pente soumis à des conditions hydrauliques faibles / An experimental study of the sediment dynamic of a torrential system under weak flow conditions.

Bacchi, Vito 23 June 2011 (has links)
Cette thèse, à dominante expérimentale, tente de décrire, de comprendre et de quantifier le transport sédimentaire pour un système torrentiel caractérisé par une forte pente et des conditions hydrauliques faibles. Une plateforme expérimentale a été mise en place et instrumentée. Elle permet de contrôler quatre paramètres du système : la pente du canal, le débit hydraulique, le débit solide et la granulométrie. La durée des expériences est suffisamment longue pour couvrir l'ensemble des fluctuations gouvernant le transport. L'étude de l'évolution d'un même mélange granulaire soumis à un forçage hydraulique fort, (Shield = 1.37 Shield critique) ou à un forçage hydraulique faible (Shield = 0.94 Shield critique) a permis de mettre en évidence, au sein des structures sédimentaires observées, deux classes de comportement différentes. Pour l'expérience à Faible Transport, le lit est globalement pavé au cours de la durée de l'expérience qui est de 110 heures. Des structures de type step-pools sont présentes et très stables, et contrôlent la dynamique de transport du système à court terme et à long terme. A court terme, le transport solide n'est pas uniforme mais s'effectue à travers des processus transitoires d'érosion et de dépôt « de proche en proche », associés respectivement à la destruction et à la formation de step-pools dans le système. A long terme, les step-pools conduisent à un pavage uniforme sur l'ensemble du canal. Des destructions périodiques de ce pavage de surface sont également observées et sont associées à une capacité de transport pour le système pouvant atteindre jusqu'à 15 fois le débit solide moyen. Pour l'expérience à Fort Transport, d'une durée de 92 heures, la morphologie du lit fluctue entre deux états extrêmes. Un lit plat dont la surface est formée de particules fines, à forte capacité de transport et un lit pavé à forte pente et à faible capacité de transport. Les step-pools ne sont, ici, que des états éphémères associés à la phase de transition du système qui sont rapidement détruits par les nappes de charriage. Ces dernières sont le mode principal de transport pour le système et expliquent les évolutions cycliques mesurées à court et à long terme. Enfin, nous avons étudié les conséquences des phénomènes décrits ci-dessus en conditions hors équilibre à forte pente. Nous avons pour cela réalisé deux expériences : une première expérience où nous étudions le cas d'un système en phase d'aggradation et une seconde où nous prenons le cas d'un système contrôlé par deux seuils de correction torrentielle. La première a nécessité une longue période afin que le système atteigne une condition d'équilibre dynamique : plus que 210 heures. L'équilibre local du système est atteint progressivement de l'amont vers l'aval, les parties les plus proches de l'alimentation atteignant en premiers l'état d'équilibre. De plus, pendant l'aggradation les fluctuations du système autour de la moyenne sont inférieures à celles mesurées pour un système à l'équilibre. La seconde expérience a montré que l'aménagement d'un système torrentiel avec des seuils peut avoir un impact non négligeable sur la quantité maximum de matériau transporté au cours d'un seul événement. Néanmoins, l'intensité maximale instantanée du transport et le comportement global du système à long terme ne sont en rien affectés par la présence de seuils. / This experimental thesis aims to describe, understand and quantify the sediment dynamics of a torrential system, characterized by steep slope and low hydraulic conditions. An experimental platform has been developed and instrumented for monitoring the channel slope, the water discharge, the feed solid discharge and the bed grain size distribution. The duration of the experiments were sufficiently long to cover all the fluctuations governing the bedload transport phenomenon. Two flow conditions were considered, in order to observe the bed dynamic under different forcing. A strong hydraulic forcing capable to move the bed pavement (Shield parameter = 1.37 Critical Shield parameter) was compared to a low hydraulic forcing supposed to not disturb the bed pavement (Shield Parameter = 0.94 Critical Shield Parameter). We measured for each case the sediment dynamic and associated bedforms. For the “Low Transport” experiment the bed was generally paved over all the duration of the experiment (110 hours). Bedforms similar to step-pools developed and were present for all the duration of the run. These macroforms seems to control the transport dynamic of the system in the short and long term. In the short term, bedload transport was not uniform. Instead, transient processes of erosion / deposition associated with the formation / destruction of step-pools were observed. In the long term, step-pools lead to the formation of a uniform paved bed on the whole channel length. Periodic destruction of bed pavement was also observed and associated with a transport capacity that could reach 15 times the value of average measured bedload transport. For the “High Transport” experiment (92 hours) the channel morphology fluctuates between two extremes. A flat bed characterised by highly mobile fine sediments and high transport capacity, and a steep paved bed corresponding to a low transport capacity. For this experiment step-pools were just a transitory state associated with the transition between the two extremes and they are quickly destroyed by the bedload sheets propagation. Bedload sheets were the main transport mode for the system. Their formation and propagation can explain the cyclical evolution of the system in the short and long term. We finally studied the consequences of the observed phenomena for non-equilibrium systems on steep slopes. We conducted two experiments: one in order to reproduce an aggradational system and the second to reproduce the dynamic of a system controlled by two check dams. A very long duration was necessary for reaching the dynamic equilibrium condition with the aggradational system (more than 210 hours). The local equilibrium was achieved gradually from upstream to downstream, with the flume sections closest to the feeding device attaining first the dynamic equilibrium. Experiments with check dams showed that this kind of slope correction can have a significant impact on the maximum amount of material transported during a single event. However, the maximum instantaneous transport and the long term sediment behaviour of the system are not affected by the presence of the check dams.
7

Field and Flume Investigations of Bedload Transport and Bedforms in Sand-Bedded Rivers

January 2018 (has links)
abstract: Worldwide, rivers and streams make up dense, interconnected conveyor belts of sediment– removing carved away earth and transporting it downstream. The propensity of alluvial river beds to self-organize into complex trains of bedforms (i.e. ripples and dunes) suggests that the associated fluid and sediment dynamics over individual bedforms are an integral component of bedload transport (sediment rolled or bounced along the river bed) over larger scales. Generally speaking, asymmetric bedforms (such as alluvial ripples and dunes) migrate downstream via erosion on the stoss side of the bedform and deposition on the lee side of the bedform. Thus, the migration of bedforms is intrinsically linked to the downstream flux of bedload sediment. Accurate quantification of bedload transport is important for the management of waters, civil engineering, and river restoration efforts. Although important, accurate qualification of bedload transport is a difficult task that continues t elude researchers. This dissertation focuses on improving our understanding and quantification of bedload transport on the two spatial scales: the bedform scale and the reach (~100m) scale. Despite a breadth of work investigating the spatiotemporal details of fluid dynamics over bedforms and bedload transport dynamics over flat beds, there remains a relative dearth of investigations into the spatiotemporal details of bedload transport over bedforms and on a sub-bedform scale. To address this, we conducted two sets of flume experiments focused on the two fundamental regions of flow associated with bedforms: flow separation/reattachment on the lee side of the bedform (Chapter 1; backward facing-step) and flow reacceleration up the stoss side of the next bedform (Chapter 2; two-dimensional bedform). Using Laser and Acoustic Doppler Velocimetry to record fluid turbulent events and manual particle tracking of high-speed imagery to record bedload transport dynamics, we identified the existence and importance of “permeable splat events” in the region proximal to flow reattachment. These coupled turbulent and sediment transport events are integral to the spatiotemporal pattern of bedload transport over bedforms. Splat events are localized, high magnitude, intermittent flow features in which fluid impinges on the bed, infiltrates the top portion of bed, and then exfiltrates in all directions surrounding the point of impingement. This initiates bedload transport in a radial pattern. These turbulent structures are primarily associated with quadrant 1 and 4 turbulent structures (i.e. instantaneous fluid fluctuations in the streamwise direction that bring fluid down into the bed in the case of quadrant 1 events, or up away from the bed in the case of quadrant 4 events) and generate a distinct pattern of bedload transport compared to transport dynamics distal to flow reattachment. Distal to flow reattachment, bedload transport is characterized by relatively unidirectional transport. The dynamics of splat events, specifically their potential for inducing significant magnitudes of cross-stream transport, has important implications for the evolution of bedforms from simple, two dimensional features to complex, three-dimensional features. New advancements in sonar technology have enabled more detailed quantification of bedload transport on the reach scale, a process paramount to the effective management of rivers with sand or gravel-dominated bed material. However, a practical and scalable field methodology for reliably estimating bedload remains elusive. A popular approach involves calculating transport from the geometry and celerity of migrating bedforms, extracted from time-series of bed elevation profiles (BEPs) acquired using echosounders. Using two sets of repeat multibeam sonar surveys from the Diamond Creek USGS gage station in Grand Canyon National Park with large spatio-temporal resolution and coverage, we compute bedload using three field techniques for acquiring BEPs: repeat multi-, single-, and multiple single-beam sonar. Significant differences in flux arise between repeat multibeam and single beam sonar. Mulitbeam and multiple single beam sonar systems can potentially yield comparable results, but the latter relies on knowledge of bedform geometries and flow that collectively inform optimal beam spacing and sampling rate. These results serve to guide design of optimal sampling, and for comparing transport estimates from different sonar configurations. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2018
8

Improvement of Signal Analysis for Surrogate Bedload Monitoring at Sediment Bypass Tunnels / 排砂バイパストンネルにおける掃流砂間接計測のための信号解析手法の高度化

Koshiba, Takahiro 23 March 2020 (has links)
付記する学位プログラム名: グローバル生存学大学院連携プログラム / 京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22419号 / 工博第4680号 / 新制||工||1730(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 角 哲也, 准教授 竹門 康弘, 准教授 Sameh Kantoush / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
9

Trapping Efficiencies for the BLH-84, Helley-Smith, Elwha, and TR-2 Bedload Samplers

Gray, John R. 03 July 2019 (has links)
Bedload-trapping efficiencies for four types of pressure-difference bedload samplers – a standard Helley-Smith (intake-nozzle width and height of 76.2 mm x 76.2 mm), BLH-84 (76.2 mm x 76.2 mm), Elwha (203 mm x 102 mm) and Toutle River-2 (305 mm x 152 mm) a standard Helley-Smith, US BLH-84 (both with intake nozzle dimensions of 76.2 mm × 76.2 mm), Elwha (203 mm × 102 mm) and Toutle River-2 (TR-2; 305 mm × 152 mm) – were calculated from data collected during the StreamLab06 experiments in the St. Anthony Falls Laboratory Main Flume during January-March 2006. Sampler nozzle-flare ratios –the area of the nozzle's outlet divided by its inlet area – equaled 1.4 for all but the Helley-Smith sampler's nozzle-flare ratio of 3.22. A sampler's trapping coefficient quantifies its bedload-trapping efficiency. Technically supportable trapping coefficients are divided into raw trapping rates measured by the sampler to produce "true" bedload-transport rates equivalent to that which was inferred to have occurred in the absence of the sampler. Six combinations of sampler and bed types were tested; the BLH-84, Elwha, and Helley-Smith samplers were deployed atop a sand bed (D50 = 1.0 mm) during five steady flows ranging from 2.0-3.6 m3/s. The BLH-84, Elwha, and TR-2 samplers were deployed atop a gravel bed (D50 = 11.2 mm) at four steady flows ranging from 4.0-5.5 m3/s. Thirty-seven trials – repeated manual at-a-point deployments of a given bedload sampler for a given steady flow and bed type – took place. Trapping coefficients were calculated for each sampler and bed type in which it was deployed. Ergo, two of the samplers – the BLH-84 and Elwha – were each assigned two trapping efficiencies for sampling on a sand versus a gravel bed. These data were evaluated using four analytical methods: Ratio of Averages: This relatively simple and straight-forward method required calculating averages of bedload-transport rates derived for each of the 37 trials for a given bedload sampler and for up to nine combinations of weigh pans and time intervals. The computations were performed using untransformed data. Average of Ratios: This more complex method using real-space trapping data involved developing average transport rates from selected pan data for each bedload sample. Pan transport-averages were calculated for each interval equal to the duration of a single at-a-point bedload measurement, ranging from 15-180 seconds. Ratios (coefficients) were calculated by dividing each interval average into the single-sample trap rate. Those ratios were then averaged to produce a single trapping coefficient for the trial and then combined into a single average for each bedload-sampler/bed type/flow combination. Modified Thomas and Lewis Model (1993): The Thomas-Lewis Model was revised to operate using untransformed data in addition to cube-root transformed data (thus, the third and fourth analytical methods used, respectively), and to use nine pan-window combinations to calculate trapping coefficients. The original 3-step model required first regressing cube root-transformed sampler data on time-window averaged pan transport rates. The second step squared the regression residuals from the first step on the variance of the cube root of the interval-mean transport rate for the time window. The predicted values from the second-step regression were inverted and used as weights to re-estimate the first-step regression. Generalized trapping-coefficient calculations based on results from the four analytical methods for the bed-types in which the samplers were deployed follow: • BLH-84 Sampler: A 0.83 sand-bed trapping coefficient and 0.87 gravel-bed coefficient, which could be averaged to a single coefficient of 0.85. • Elwha Sampler: A 1.67 sand-bed trapping coefficient and 1.54 gravel-bed coefficient, which could be averaged to a single coefficient of 1.6 • Helley-Smith Sampler: The 3.11 sand-bed trapping coefficient could be applied as such or reasonably simplified to a value of 3.0, and • TR-2: The gravel-bed trapping coefficient equaled 1.70. An unadjusted bedload-trapping rate calculated from a sample collected by a given sampler can be divided by its trapping coefficient(s) to obtain the most reliable transport-rate value. / Ph.D.
10

Mathematical modeling of soil erosion by rainfall and shallow overland flow

Zheng, Tingting January 2011 (has links)
New analytical and numerical solutions are developed to both the kinematic approximation to the St Venant equations and the Hairsine-Rose (HR) soil erosion model in order to gain a better physical understanding of soil erosion and sediment transport in shallow overland flow. The HR model is unique amongst physically based erosion models in that it is the only one that: considers the entire distribution of the soil s sediment size classes, considers the development of a layer of deposited non-cohesive sediment having different characteristics to the original underlying cohesive soil and considers separately the erosion processes of rainfall detachment, runoff entrainment and gravitational deposition. The method of characteristics and the method of lines were used to develop both the analytical and numerical solutions respectively. These solutions were obtained for boundary and initial conditions typical of those used in laboratory flume experiments along with physically realistic constant and time dependent excess rainfall rates. Depending on the boundary and initial conditions, interesting new solutions of the kinematic wave equation containing expansion waves, travelling shocks as well as solutions which split into an upslope and downslope drying profiles were found. Numerical solutions of the HR model were applied to the experimental flume data of Polyakov and Nearing (2003) obtained under flow conditions which periodically cycled between net erosion and net deposition conditions. While excellent agreement was found with suspended sediment data, the analysis suggested that an additional transport mechanisms, traditionally not included in soil erosion models, was occurring. While the inclusion of bed-load transport improved the ii overall model prediction, it was still not sufficient. Subsequent asymptotic analysis then showed that the interaction of the flow with an evolving bed morphology was in fact far more important than bed load transport. A very interesting finding from this work showed that the traditional criterion of validating sediment transport model based solely on suspended sediment data was not sufficient as reliable predictions could be obtained even when important transport mechanisms were neglected. Experimental plots of sediment discharge or suspended sediment concentration against water discharge in overland flow have been shown to contain significant hysteresis between the falling and rising limbs of the discharge hydrograph. In the final Chapter, the numerical solution developed for the complete system of soil erosion and kinematic flow was used to show that it was possible for the HR model to simulate three of the four hysteresis loops identified in the literature. Counter clock-wise loops, clock-wise loops and figure 8 loops could all be produced as a result of starting with different initial conditions, being mi(x; 0) = 0, mi(x; 0) = pimt and mi(x; 0) = 0:5pimt respectively. This is the first time that these types of hysteresis loops have been produced by any erosion model. The generation of these hysteresis loops are physically explainable in terms of sediment availability and is consistent with data obtained on the field scale.

Page generated in 0.0807 seconds