• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance Evaluation of Imitation Learning Algorithms with Human Experts

Båvenstrand, Erik, Berggren, Jakob January 2019 (has links)
The purpose of this thesis was to compare the performance of three different imitation learning algorithms with human experts, with limited expert time. The central question was, ”How should one implement imitation learning in a simulated car racing environment, using human experts, to achieve the best performance when access to the experts is limited?”. We limited the work to only consider the three algorithms Behavior Cloning, DAGGER, and HG-DAGGER and limited the implementation to the car racing simulator TORCS. The agents consisted of the same type of feedforward neural network that utilized sensor data provided by TORCS. Through comparison in the performance of the different algorithms on a different amount of expert time, we can conclude that HGDAGGER performed the best. In this case, performance is regarded as a distance covered given set time. Its performance also seemed to scale well with more expert time, which the others did not. This result confirmed previously published results when comparing these algorithms. / Målet med detta examensarbete var att jämföra prestandan av tre olika algoritmer inom området imitationinlärning med mänskliga experter, där experttiden är begränsad. Arbetets frågeställning var, ”Hur ska man implementera imitationsinlärning i en bilsimulator, för att få bäst prestanda, med mänskliga experter där experttiden är begränsad?”. Vi begränsade arbetet till att endast omfatta de tre algoritmerna, Behavior Cloning, DAGGER och HG-DAGGER, och begränsade implementationsmiljön till bilsimulatorn TORCS. Alla agenterna bestod av samma sorts feedforward neuralt nätverk som använde sig av sensordata från TROCS. Genom jämförelse i prestanda på olika mängder experttid kan vi dra slutsatsen att HG-DAGGER gav bäst resultat. I detta fall motsvarar prestanda körsträcka, givet en viss tid. Dess prestanda verkar även utvecklas väl med ytterligare experttid, vilket de övriga inte gjorde. Detta resultat bekräftar tidigare publicerade resultat om jämförelse av de tre olika algoritmerna.
2

Training an Artificial Bat: Modeling Sonar-based Obstacle Avoidance using Deep-reinforcement Learning

Mohan, Adithya Venkatesh January 2020 (has links)
No description available.
3

On the Efficiency of Transfer Learning in a Fighter Pilot Behavior Modelling Context / Effektiviteten av överföringsinlärning vid beteendemodellering av stridspiloter

Sandström, Viktor January 2021 (has links)
Creating realistic models of human fighter pilot behavior is made possible with recent deep learning techniques. However, these techniques are often highly dependent on large datasets, often unavailable in many settings, or expensive to produce. Transfer learning is an active research field where the idea is to leverage the knowledge gained from studying a problem for which large amounts of training data are more readily available, when considering a different, related problem. The related problem is called the target task and the initial problem is called the source task. Given a successful transfer scenario, a smaller amount of data, or less training, can be required to reach high quality results on the target task. The first part of this thesis focuses on the development of a fighter pilot model using behavior cloning, a method for reducing an imitation learning problem to standard supervised learning. The resulting model, called a policy, is capable of imitating a human pilot controlling a fighter jet in the military combat simulator Virtual BattleSpace 3. In this simulator, the forces acting on the aircraft can be modelled using one of several flight dynamic models (FDMs). In the second part, the efficiency of transfer learning is measured. This is done by replacing the built-in FDM to one with a significant variation in the input response, and subsequently train two policies on successive amount of data. One policy was trained using only the latter FDM, whereas the other policy exploits the gained knowledge from the first part of the thesis, using a technique called fine-tuning. The results indicate that a model already capable of handling one FDM, adapts to a different FDM with less data compared to a previously untrained policy. / Realistiska modeller av mänskligt pilotbeteende kan potentiellt skapas med djupinlärningstekniker. För detta krävs ofta stora datamängder som för många tillämpningar saknas, eller är dyra att ta fram. Överföringsinlärning är ett aktivt forskningsfält där grundidén är att utnyttja redan inlärd kunskap från ett problem där stora mängder träningsdata finns tillgängligt, vid undersökning av ett relaterat problem. Vid lyckad överföringinlärning behövs en mindre mängd data, eller mindre träning, för att uppnå ett önskvärt resultat på denna måluppgift. Första delen av detta examensarbete handlar om utvecklingen av en pilotmodell med hjälp av beteendekloning, en metod som reducerar imitationsinlärning till vanlig övervakad inlärning. Den resulterande pilotmodellen klarar av att imitera en mänsklig pilot som styr ett stridsflygplan i den militära simulatormiljön Virtual BattleSpace 3, där krafterna som verkar på flygplanet modelleras med en enkel inbyggd flygdynamiksmodell. I den andra delen av arbetet utvärderas överföringsförmågan mellan olika flygdynamiksmodeller. Detta gjordes genom att ersätta den inbyggda dynamiken till en dynamik som modellerar ett annat flygplan och som svarar på styrsignaler på ett vida olikartat sätt. Sedan tränades två stridspilotmodeller successivt på ökad mängd data. Den ena pilotmodellen tränas endast med den ena dynamiken varvid den andra pilotmodellen utnyttjar det redan inlärda beteendet från första delen av arbetet, med hjälp av en teknik som kallas finjustering. Resultaten visar att en pilotmodell som redan lärt sig att flyga med en specifik flygdynamik har lättare att lära sig en ny dynamik, jämfört med en pilotmodell som inte förtränats.

Page generated in 0.0516 seconds