• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 4
  • 1
  • Tagged with
  • 145
  • 145
  • 82
  • 25
  • 25
  • 23
  • 18
  • 17
  • 17
  • 15
  • 13
  • 13
  • 13
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

<b>EXPLORING THE ROLE OF AC1 INHIBITION IN PAIN AND ALCOHOL REWARD-RELATED BEHAVIOR IN A HIGH ALCOHOL PREFERRING MOUSE LINE</b>

Michelle M Karth (19193248) 22 July 2024 (has links)
<p dir="ltr">Previous research shows that the prevalence rates for alcohol use disorder, opioid use disorder, and chronic pain are high worldwide. Additional work has demonstrated that the most used pain medications are potentially addictive and not suitable for chronic use. Recent research suggests that inhibiting adenylyl cyclase type 1 (AC1) may be an alternative, non-addictive, method for reducing pain. The purpose of this study was to explore the effects of a novel AC1 inhibitor (CMPD84) on pain threshold and alcohol reward-related behavior in high-alcohol preferring male and female mice (HAP). No research to date has investigated the effects of AC1 inhibition on pain threshold and alcohol-induced conditioned place preference (CPP) in HAP mice, making this the first study to do so. Two manual von Frey experiments were run to explore the effects of CMPD84 (compared to alcohol and morphine) on pain threshold. Three CPP experiments were run to assess the effects of CMPD84 on the expression and acquisition of alcohol-induced CPP. Brain samples were taken from the NAc shell and vlPAG to assess levels of PKCε after the pain threshold experiments and the acquisition CPP experiment. PKCε has previously been shown to be linked to alcohol reward-behavior and pain relief. Results show that CMPD84 was more efficacious in increasing pain threshold in HAP mice compared to morphine and alcohol. CMPD84 also reduced the acquisition and expression of alcohol-induced CPP. AC1 inhibition reduced levels of PKCε in the brain, which matched behavioral results that reduced the expression and acquisition of alcohol-induced CPP, as well as increased pain threshold. These results suggest that PKCε may be linked to AC1 inhibition, pain threshold, and alcohol reward-related behaviors. </p>
132

The effect of manipulating the expression of the NR2B subunit of the NMDA receptor on learning and memory

Hoon, A. C. January 2011 (has links)
Overexpression of the NR2B subunit of the NMDA receptor in the forebrain has been shown to improve learning and memory in mice (Tang et al 1999), which provides exciting implications for the enhancement of human cognition. However, it was first essential to establish replicability, and since the Tang et al (1999) study used only male mice we wished to investigate possible sex differences. On the hidden platform watermaze, we found a trend for male NR2BOE mice to learn the task more quickly than male wildtype mice (as observed by Tang et al. 1999), but the opposite trend in female mice; female NR2BOE mice were slower to reach the hidden platform than female wildtype mice. This pattern of results was also observed on the spatial reference Y memory task and open field task (for anxiety), although not on the spatial working memory T maze task (despite a sex difference). However, wildtype and NR2BOE mice performed at similar levels on the novel object recognition task, the spatial novelty preference task, visible platform watermaze and visual discrimination task. A battery of tests considering some species typical behaviours of mice demonstrated that wildtype and NR2BOE mice were comparable on tests of motor ability, strength, co-ordination, anxiety, burrowing and nesting. This suggests that our behavioural results are not due to a general impairment or enhancement of species typical behaviours. We considered the possibility that the difference between the results of Tang et al (1999) and those we observed may be caused by age differences; hence we attempted to replicate our results on the hidden platform watermaze, spatial reference Y maze and open field test in age matched mice. However, the second cohort of NR2BOE mice performed at similar levels to wildtype mice, and at significantly improved levels compared to the mice of the first cohort. We also considered the effects of knocking out the NR2B subunit on learning and memory, and NR1 subunit deletion within the hippocampus. On the spatial working memory T maze, these mouse strains performed similarly to their respective wildtype strains. Similarly, on a two beacon watermaze (with one indicating the platform position), mice lacking the NR2B subunit were able to locate the platform in a similar length of time. To ensure that the null results we had observed in the second cohort were not due to loss of the NR2B protein overexpression in the forebrain, we performed polymerase chain reactions (PCR), quantitative real-time PCR, and Western blots. We ascertained that the transgene was indeed present and that NR2B mRNA and protein levels were elevated in the hippocampi of the NR2BOE mice. In conclusion, it is unclear why the behaviours we observed in the NR2BOE mice are different to those published in the literature. It is possible that they may be due to differences in environmental enrichment, but the cause of the genotype by sex differences observed in the mice of cohort 1 is unclear. Nonetheless, we have advanced our knowledge of the effects of modifications in the levels of the NR2B subunit of the NMDA receptor on learning and behaviour.
133

Towards an understanding of the role of associative learning in risk for mental health problems

Byrom, Nicola January 2012 (has links)
The ability to prioritize information enables us to think and take action without being overwhelmed by external stimuli or internal thoughts and feelings. Neuroticism is associated with altered processing of emotional information but differences in the processing of emotional information may arise from basic differences in information processing, such as altered processes of attention, changes in sensitivity to salient information, or differences in the ability to encode conjunctions of information. Through this thesis, I explore the relationship between neuroticism and processing of non-emotional information, with a particular focus on learning about combinations of information. Associative learning paradigms were used to test ability to learn about combinations of information and neuroticism was observed to be associated with strong non-linear discrimination learning. The tendency to focus on specific details was associated with weak non-linear discrimination learning. A novel model of associative learning is presented, offering an account for how variation in the ability to engage in non-linear discrimination learning might be understood. Mechanisms underlying the association between neuroticism and strong non-linear discrimination learning were explored. Neuroticism was not found to be associated with a tendency to focus on specific details or shifts in attention towards goal relevant information. Neuroticism was not found to be associated with enhanced ability to identify feature conjunctions, altered sensitivity to the relative validity of stimuli or pre-exposure of stimuli. The importance of understanding individual differences in processes of associative and the value of associative learning tasks to look at information processing biases underlying neuroticism are discussed.
134

The genetics of handedness and dyslexia

Brandler, William M. January 2014 (has links)
The population level bias towards right-handedness in humans implies left-hemisphere dominance for fine motor control. Left-handedness and reduced cerebral asymmetry have been linked to neurodevelopmental disorders such as dyslexia. Understanding the biology of these traits at a genetic level is crucial for understanding the relationship between handedness and neurodevelopmental disorders. Here I present genome-wide association study (GWAS) meta-analyses for both relative hand skill (handedness, n = 728) and reading-related traits (n = 548) in individuals with dyslexia. I uncovered a genome-wide significant association in an intron of PCSK6 associated with relative hand skill. PCSK6 is a protease that cleaves NODAL proprotein into an active form, and NODAL determines the development of left/right (LR) asymmetry in bilaterians. I performed pathway analyses of the GWAS data that revealed handedness is determined in part by the mechanisms that establish left/right (LR) asymmetry early in development, such as NODAL signalling and ciliogenesis. This finding replicated in a general population cohort unaffected with neurodevelopmental disorders (n = 2,666). A key stage in LR asymmetry development is the rotation of cilia that creates a leftward flow of NODAL. Candidate genes for dyslexia are involved in both neuronal migration and ciliogenesis. Ciliopathies can cause not only LR body asymmetry phenotypes, but also cerebral midline phenotypes such as an absent corpus callosum. Furthermore, I identified a genome-wide significant association with non-word reading located in an intron of MAP1B, a gene involved in neuronal migration that causes an absent corpus callosum when disrupted in mice. However, this finding did not replicate in two independent cohorts with dyslexia (n = 156 & 199), or in the general population cohort (n = 2,359). Though these cohorts had inadequate reading measures and poorly matched ascertainment for dyslexia. I also performed copy number variation (CNV) pathway and burden analyses of 920 individuals with dyslexia and 1,366 unselected controls, but did not find that rare CNVs play a major role in the etiology of dyslexia. Based on these results I propose that common variants in genes responsible for ciliogenesis and corpus callosum development influence traits such as handedness and reading ability.
135

The influence of emotional stimuli on cognitive processing during transient induced mood states

Coulson, Louisa Katie January 2012 (has links)
Selective attention is a mechanism used to allocate resources to information processing. Both mood states and emotionally salient stimuli can influence which information is selectively attended. This information is subsequently processed in a more elaborative manner and affects task performance. The experiments presented in this thesis explore the influence of mood and emotional stimuli on selective attention and consequently task performance. Mood induction procedures were used to induce transient neutral, sad, and happy mood states in healthy volunteers. A systematic review and meta-analysis of 41 studies using sad mood induction procedures showed cognitive impairments in performance in the context of task neutral stimuli. In contrast biases in attention towards mood-congruent negative stimuli led to improved task performance. A series of three behavioural experiments with 197 participants demonstrated that participants made decisions on the basis of less information when that information was preceded by emotional but not neutral stimuli. Induced mood state did not affect performance. The behavioural and neural correlates of visual attentional processing to emotional stimuli were explored using magnetoencephalography in 24 healthy participants following sad, happy, and neutral mood induction procedures. The M300, a component associated with selective attention, had greater amplitude following presentation of negative compared with positive stimuli, which was associated with improved task performance. Reduced M300 amplitude and impairments in performance occurred following sad mood induction procedures. The experiments presented in this thesis demonstrate prioritized processing of emotional information and provide some evidence for impaired performance following sad mood induction procedures.
136

Modelling human decision under risk and uncertainty

Hunt, Laurence T. January 2011 (has links)
Humans are unique in their ability to flexibly and rapidly adapt their behaviour and select courses of action that lead to future reward. Several ‘component processes’ must be implemented by the human brain in order to facilitate this behaviour. This thesis examines two such components; (i) the neural substrates supporting action selection during value- guided choice using magnetoencephalography (MEG), and (ii) learning the value of environmental stimuli and other people’s actions using functional magnetic resonance imaging (fMRI). In both situations, it is helpful to formally model the underlying component process, as this generates predictions of trial-to-trial variability in the signal from a brain region involved in its implementation. In the case of value-guided action selection, a biophysically realistic implementation of a drift diffusion model is used. Using this model, it is predicted that there are specific times and frequency bands at which correlates of value are seen. Firstly, there are correlates of the overall value of the two presented options, and secondly the difference in value between the options. Both correlates should be observed in the local field potential, which is closely related to the signal measured using MEG. Importantly, the content of these predictions is quite distinct from the function of the model circuit, which is to transform inputs relating to the value of each option into a categorical decision. In the case of social learning, the same reinforcement learning model is used to track both the value of two stimuli that the subject can choose between, and the advice of a confederate who is playing alongside them. As the confederate advice is actually delivered by a computer, it is possible to keep prediction error and learning rate terms for stimuli and advice orthogonal to one another, and so look for neural correlates of both social and non-social learning in the same fMRI data. Correlates of intentional inference are found in a network of brain regions previously implicated in social cognition, notably the dorsomedial prefrontal cortex, the right temporoparietal junction, and the anterior cingulate gyrus.
137

Sensory information to motor cortices: Effects of motor execution in the upper-limb contralateral to sensory input.

Legon, Wynn 22 September 2009 (has links)
Performance of efficient and precise motor output requires proper planning of movement parameters as well as integration of sensory feedback. Peripheral sensory information is projected not only to parietal somatosensory areas but also to cortical motor areas, particularly the supplementary motor area (SMA). These afferent sensory pathways to the frontal cortices are likely involved in the integration of sensory information for assistance in motor program planning and execution. It is not well understood how and where sensory information from the limb contralateral to motor output is modulated, but the SMA is a potential cortical source as it is active both before and during motor output and is particularly involved in movements that require coordination and bilateral upper-limb selection and use. A promising physiological index of sensory inflow to the SMA is the frontal N30 component of the median nerve (MN) somatosensory-evoked potential (SEP), which is generated in the SMA. The SMA has strong connections with ipsilateral areas 2, 5 and secondary somatosensory cortex (S2) as well as ipsilateral primary motor cortex (M1). As such, the SMA proves a fruitful candidate to assess how sensory information is modulated across the upper-limbs during the various stages of motor output. This thesis inquires into how somatosensory information is modulated in both the SMA and primary somatosensory cortical areas (S1) during the planning and execution of a motor output contralateral to sensory input across the upper-limbs, and further, how and what effect ipsilateral primary motor cortex (iM1) has upon modulation of sensory inputs to the SMA.
138

Sensory information to motor cortices: Effects of motor execution in the upper-limb contralateral to sensory input.

Legon, Wynn 22 September 2009 (has links)
Performance of efficient and precise motor output requires proper planning of movement parameters as well as integration of sensory feedback. Peripheral sensory information is projected not only to parietal somatosensory areas but also to cortical motor areas, particularly the supplementary motor area (SMA). These afferent sensory pathways to the frontal cortices are likely involved in the integration of sensory information for assistance in motor program planning and execution. It is not well understood how and where sensory information from the limb contralateral to motor output is modulated, but the SMA is a potential cortical source as it is active both before and during motor output and is particularly involved in movements that require coordination and bilateral upper-limb selection and use. A promising physiological index of sensory inflow to the SMA is the frontal N30 component of the median nerve (MN) somatosensory-evoked potential (SEP), which is generated in the SMA. The SMA has strong connections with ipsilateral areas 2, 5 and secondary somatosensory cortex (S2) as well as ipsilateral primary motor cortex (M1). As such, the SMA proves a fruitful candidate to assess how sensory information is modulated across the upper-limbs during the various stages of motor output. This thesis inquires into how somatosensory information is modulated in both the SMA and primary somatosensory cortical areas (S1) during the planning and execution of a motor output contralateral to sensory input across the upper-limbs, and further, how and what effect ipsilateral primary motor cortex (iM1) has upon modulation of sensory inputs to the SMA.
139

Site-directed monoclonal antibodies : developing a tool for manipulating AMPA-type ionotropic glutamate receptor subunits in the mouse brain

Lee, Aletheia January 2014 (has links)
Ionotropic glutamate AMPA-type receptors mediate fast excitatory neurotransmission in the central nervous system and are essential for synaptic plasticity. Expression of the receptor subunits varies with cell type, stage of development and brain region. Subunit composition determines functional properties of the receptor, including gating kinetics and synaptic trafficking. The research aimed to selectively disrupt the GluA1 subunit abundantly expressed in the hippocampus of the wild-type mouse, so as to examine its role in learning and memory. Site-directed monoclonal antibodies were engineered to target the extracellular amino-terminal domain of GluA1 for subunit-selective manipulation. The antibody-binding region was selected for heterogeneity and accessibility based on the amino acid sequences and crystal structures solved for the AMPA receptor subunits. Immunisations of peptide antigen in mice generated serum antibodies that recognise the equivalent epitope on the fully folded GluA1 subunit. The antigen-binding Fab fragment of the monoclonal anti-GluA1 antibody was cloned from hydridoma mRNA and purified from large-scale transient expression in mammalian cells. Biophysical characterisations of anti-GluA1 Fab immunoglobulin showed high specificity and affinity for the target subunit. Acute bilateral intrahippocampal administration of anti-GluA1 Fab protein into awake, behaving wild-type mice produced dissociations in spatial memory performance that resembled GluA1-/- knockout mice. Impaired short-term spatial working memory but intact long-term spatial reference memory observed with anti-GluA1 Fab infusions suggested that the immunoglobulin reagent exerted an acute, reversible, localised, GluA1-specific antagonism in the brain. The findings argue for a critical involvement of the hippocampal GluA1 subunit in certain short-term memory processes, but not in other distinct long-term memory processes. Temporal resolution of the antibody-mediated disruption revealed novel fractionations of short-term memory performance never before observed in the GluA1-/- knockout mice, demonstrating the strength of the monoclonal anti-GluA1 antibodies as an investigative tool.
140

The role of catechol-O-methyltransferase (COMT) in hippocampal function

Laatikainen, Linda Maria January 2010 (has links)
Catechol-O-methyltransferase (COMT) metabolises catechol-containing compounds, including dopamine. The aim of this thesis was to investigate whether COMT is involved in hippocampal function. This thesis also explored the role of functional polymorphisms within the COMT gene in the pathogenesis of schizophrenia and schizophrenia-related phenotypes. First, as part of a study investigating the role of COMT in schizophrenia, human hippocampal COMT mRNA levels were shown to be neither altered in schizophrenia or bipolar disease, nor affected by COMT genotype. Hence, functional COMT polymorphisms do not appear to operate by altering gross COMT mRNA expression. Importantly, this study showed that COMT is expressed in the human hippocampus. Second, the role of COMT in hippocampal neurochemistry was explored by studying the effect of pharmacological COMT inhibition on catecholamines and metabolites in rat hippocampal homogenates, and extracellularly, using microdialysis. Both demonstrated that COMT modulates hippocampal dopamine metabolism. Thus, hippocampal COMT is of functional significance with respect to dopamine. Third, the effect of COMT inhibition on hippocampus-dependent behaviour was investigated. The results suggested a memory-enhancing effect of pharmacological COMT inhibition on hippocampus-dependent associative and non-associative forms of short-term memory in rats. In contrast, acute COMT inhibition appeared to have no effect on behavioural correlates of ventral hippocampal function i.e. anxiety-like behaviour. In summary, the expression of COMT mRNA in the human hippocampus, as well as the effect of COMT inhibition on rat hippocampal neurochemistry and hippocampus-dependent behaviour provide evidence for a functional role of COMT in the hippocampus. Moreover, changes in COMT activity alter hippocampal dopamine metabolism, which could be a potential mechanism for the role of COMT in hippocampus-dependent short-term memory.

Page generated in 0.0771 seconds