Spelling suggestions: "subject:"beneficial reuse"" "subject:"deneficial reuse""
1 |
Beneficial Reuse of Dredged Materials in Upland EnvironmentsHaus, Nicholas Wes 02 February 2012 (has links)
Sediments excavated from dredging operations are known as dredged materials. Beneficial reuse of dredged materials in confined utilization facilities (CUFs) is a new approach that has the potential to productively utilize large quantities of dredged materials. However, several factors can inhibit the use of dredged materials in CUFs. In this study, high levels of salts and polycyclic aromatic hydrocarbons (PAHs) were investigated. In the first part of this study, 176,000 m3 of saline dredged materials was placed into a CUF. In less than 4 years, most of the dredged materials had developed horizonation and converted to Inceptisols. The formation of pedogenic Bg horizons in these soils occurred after a polygonal prism network had developed which partially disintegrated into a blocky structured, oxidized horizon with an abundance of redoximorphic features. During the study period, the soil chemistry of the weathering dredged materials shifted from Na-dominated to Ca and Mg-dominated system, allowing plant invasion. In the second part of the study, a bench-scale greenhouse bioremediation experiment was conducted to test the effectiveness of biosolids, compost, and straw at enhancing PAH degradation. Initial concentrations of PAHs decreased significantly after 150 days using standard methods of extraction. However, at 327 days the concentrations of many PAHs, especially those with higher molecular weights, had rebounded close to initial levels. This indicates that PAH bioremediation studies using organic matter additions and conducted using standard methods of extraction need to be carried out longer periods of time or that extraction methods need to be improved. / Master of Science
|
2 |
Stabilization of marginal soils using recycled materialsCarreon, Delfin G 01 June 2006 (has links)
Marginal soils, including loose sands, soft clays, and organics are not adequate materials for construction projects. These marginal soils do not possess valuable physical properties for construction applications. The current methods for remediation of these weak soils such as stone columns, vibro-compaction, etc. are typically expensive. Waste materials such as scrap tires, ash, and wastewater sludge, offer a cheaper method for stabilizing marginal soils. As an added benefit, utilizing waste materials in soil stabilization applications keeps these materials from being dumped into landfills, thereby saving already depleting landfill space. Included in this report is an extensive investigation into the current state of research on waste and recycled materials in construction applications. Also included is an investigation on actual implementation of this research in construction projects. Upon completion of this investigation, an effort was made to determine waste materials specific to the state of Florida (waste roofing shingles, municipal solid waste ash, waste tires, and paper mill sludge) that could be used in stabilizing marginal soils through soil mixing techniques. Changes in the engineering properties of soils as a result of adding these waste materials were studied and recommendations on implementing these effects into construction applications are offered.
|
3 |
Managing Soils For Environmental Science And Public Health ApplicationsObrycki, John F. 21 December 2016 (has links)
No description available.
|
Page generated in 0.0595 seconds