1 |
Numerical Simulation of the Generalized Modified Benjamin-Bona-Mahony Equation Using SBP-SAT in TimeKjelldahl, Vilma January 2023 (has links)
This paper describes simulations of the generalized modified Benjamin-Bona-Mahony (BBM) equation, using finite difference methods (FDM). Well-posed boundary conditions (BCs) as well as stable semi-discrete approximations are derived using summations-by-parts (SBP) operators combined with the projection method. For time integration, explicit Runge-Kutta 4 (RK4) is used, as well as SBP-SAT, which discretizes the temporal domain using SBP operators and imposes initial conditions using simultaneous approximation term (SAT). These time-marching methods are evaluated and compared in terms of accuracy and computing times, and soliton-boundary interaction is studied. It is shown that SBP-SAT time-marching perform well and is more suitable than RK4 for this type of non-linear, dispersive problem. Generalized summation-by-parts (GSBP) time-marching perform particularly well, due to high accuracy with few solution points.
|
2 |
Equações dispersivas : estabilidade orbital de ondas viajantes perióricas / Dispersive equations : orbital stability of periodic traveling wavesAndrade, Thiago Pinguello de, 1985- 09 August 2014 (has links)
Orientador: Ademir Pastor Ferreira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T19:57:48Z (GMT). No. of bitstreams: 1
Andrade_ThiagoPinguellode_D.pdf: 2608603 bytes, checksum: 20935cf463b03d1c5c1390b127a42f4f (MD5)
Previous issue date: 2014 / Resumo: Nesta tese estudamos estabilidade orbital de ondas viajantes periódicas para modelos dispersivos. O estudo de ondas viajantes iniciou-se em meados do século XVIII quando John S. Russell estabeleceu que ondas de água em um canal raso possui evolução constante. A estratégia geral para se obter a estabilidade consiste em provar que a onda viajante em questão minimiza um funcional conservado restrito a uma certa variedade. No nosso contexto, seguindo tais ideias, minimizamos o funcional restrito a uma nova variedade. Embora acreditamos que a teoria possa ser aplicada a outros modelos, nos restringimos às equações de Benjamin-Bona-Mahony (BBM) com termo não linear fracionário e Korteweg-de Vries modificada (mKdV). Além disso, resultados similares para a equação de Gardner são obtidos, usando uma estreita relação que esta possui com a mKdV / Abstract: In this thesis we study the orbital stability of periodic traveling waves for dispersive models. The study of traveling waves started in the mid-18th century when John S. Russel established that the flow of water waves in a shallow channel has constant evolution. The general strategy to obtain stability consists in proving that the traveling wave in question minimizes a conserved functional restricted to a certain manifold. In our context, following such ideas, we minimize such a functional restricted to a new manifold. Although we believe our theory can be applied to other models, we deal with the Benjamin-Bona-Mahony (BBM) equation with fractional nonlinear terms and modified Korteweg-de Vries (mKdV) equation. Besides, similar stability results for the Gardner equation are obtained, using a close relation between this equation and the mKdV / Doutorado / Matematica / Doutor em Matemática
|
Page generated in 0.0716 seconds