Spelling suggestions: "subject:"benzocaïne"" "subject:"benzocaine""
1 |
Implication des canaux sodiques dans la transmission de l'influx nociceptif périphérique et leurs modulations pharmacologiquesThériault, Olivier 20 April 2018 (has links)
Les canaux sodiques dépendant du voltage jouent différents rôles dans la transmission des signaux nociceptifs. Ils participent notamment à la genèse et à la transmission de la douleur. De plus, leur modulation serait impliquée dans les douleurs pathologiques. L’objectif général de ma thèse était d’étudier les impacts de la modulation des canaux Na+ afin de comprendre les effets sur l’activité des neurones sensitifs. Cette recherche s’est orientée sur 3 axes principaux. Premièrement, nous avons étudié la synergie entre les canaux Na+ qui mènent aux différents profils électrophysiologiques des neurones. Nous avons observé que les différents canaux Na+ exprimés dans les neurones de petits diamètres des DRG confèrent des propriétés uniques à chacun des neurones. Le remodelage des canaux Na+ qui survient dans différents états pathologiques pourrait être responsable de l’hyperexcitabilité de ces neurones. Deuxièmement, nous avons exploré les effets du butamben sur les canaux sodiques. Cette molécule soulage les douleurs pathologiques liées au cancer durant plusieurs semaines sans effet secondaire. Nous avons observé que cette molécule inhibe efficacement les canaux Na+ exprimés dans les neurones périphériques expliquant partiellement ses effets anesthésiques. De plus, son affinité est plus grande pour les canaux présents au sein des neurones sensitifs périphériques (Nav1.7 et Nav1.8) que pour celui présent dans neurones moteurs (Nav1.6). Cette propriété participerait à la sélectivité du butamben pour l’anesthésie tout en limitant les effets secondaires. Finalement, nous avons étudié les effets sur les canaux Na+ de trois inhibiteurs sélectifs de la recapture de la sérotonine (SSRI) fréquemment utilisés pour traiter différentes douleurs pathologiques (fluoxétine, paroxétine et citalopram). Nous avons observé que les effets analgésiques de la paroxétine et de la fluoxétine pourraient en partie passer par l’inhibition des canaux Na+. C’est par ailleurs improbable pour le citalopram compte tenu de sa haute spécificité pour les transporteurs de la sérotonine. L’étude a permis une meilleure connaissance de l’impact des canaux Na+ sur l’excitabilité des neurones nociceptifs. Ces avancées permettent notamment de mieux appréhender les mécanismes soutenant l’effet anesthésique des molécules telles que les SSRI et le butamben. Finalement, ces connaissances apparaissent cruciales dans le développement de nouvelles stratégies thérapeutiques. / Voltage gated sodium channels (Na+ channel) play different roles in the transmission of nociceptive signals. They are partially responsible of the genesis and the transmission of the nociceptive action potentials. Moreover, their modulation could be involved in pathological pain. The aim of the study was to investigate the impact of the modulation of sodium channels to understand how it affects nociceptive peripheral neurons excitability. This research was conducted in three phase. First, we were interested in the synergy between the different Na+ channels leading to multiple electrophysiological profiles of neurons. We observed that the different Na+ channels expressed by the small dorsal root ganglion (DRG) neurons confer unique properties to these neurons. The remodeling which occurs in various pathological conditions may thus be responsible for the increased excitability of those neurons. Second, we explored the effects of butamben on sodium channels. This molecule relieves cancer pain for several weeks without side effects. We found that the drug effectively inhibits Na + channels expressed in peripheral neurons. This partially explains its anesthetic effects. Moreover, its affinity is greater for the channels present in peripheral sensory neurons (Nav1.7 and Nav1.8) than the one present in motor neurons (Nav1.6). This property contributes to the selectivity of butamben for analgesia and limits its secondary effects. Finally, we studied the effects on Na+ channels of three selective serotonin reuptake inhibitors (SSRI) commonly used in the treatment of various pathological pains (fluoxetine, paroxetine and citalopram). We observed that paroxetine and fluoxetine may partially contribute to the analgesia through the inhibition of Na+ channels. Citalopram is unlikely to provide anesthesia through this mechanism as it is very selective for serotonin transporter. The study provides a better understanding of the impact of Na+ channels on neuronal excitability of nociceptive neurons. These advances contribute to a better understanding of the mechanisms leading to anesthesia by drugs such as SSRIs and butamben. In conclusion, these findings bring fundamental knowledge in the development of new therapeutic strategies.
|
2 |
Caractérisation physique et chimique des substances à activité thérapeutique : application aux études de profil de stabilité et de préformulation / Physical and chemical characterization of active pharmaceutical ingredients in the framework of preformulation and stability studiesGana, Inès 21 May 2015 (has links)
Le développement d’un médicament pour une cible thérapeutique donnée passe par plusieurs étapes qui se résument en une étape de criblage, une phase préclinique et plusieurs phases cliniques. Ces étapes permettent de sélectionner une substance active et de démontrer son efficacité thérapeutique et sa sécurité toxicologique. Ces deux critères définissent la qualité du médicament qui, une fois démontrée, doit être garantie pendant toute sa durée de validité. La qualité est évaluée au moyen d’études de stabilité qui sont réalisées d’abord sur la matière première de la substance active au cours de la phase de pré-développement du médicament, ensuite sur le produit fini. La stabilité intrinsèque de la substance active concerne à la fois ses propriétés chimiques et ses propriétés physiques qui sont liées à la nature de la substance. L’étude de stabilité repose d’abord sur la caractérisation de ces propriétés, et ensuite sur l’étude de la sensibilité de la substance à l’égard des facteurs environnementaux pouvant modifier les propriétés intrinsèques de la substance. L’approche adoptée dans ce travail repose d’une part sur l’évaluation de la stabilité chimique c’est à dire de la réactivité chimique des substances à usage pharmaceutique au travers des études de pureté chimique et des études de dégradation forcée de ces substances en solution, et d’autre part, sur l’évaluation de la stabilité physique. Dans ce cadre, l’étude du polymorphisme cristallin revêt une grande importance, tout comme l’aptitude à la formation d’hydrates ou de solvates. Cette étude, basée sur la thermodynamique, consiste pour l’essentiel à construire un diagramme de phases pression-température permettant de définir les domaines de stabilité relative des différentes formes cristallines. Cinq substances actives, existant à l’état solide et entrant dans la composition de médicaments administrés par voie orale, ont été étudiées dans le cadre de ce travail. L’analyse chimique du tienoxolol, présentant un effet anti-hypertenseur, a montré qu’il est très sensible à l’hydrolyse et à l’oxydation. Sept produits de dégradation ont été identifiés pour ce produit dont un schéma probable de fragmentation a été établi. Des diagrammes de phases pression-température ont été construits pour le bicalutamide et le finastéride, médicaments du cancer de prostate, en utilisant une approche topologique basée simplement sur les données disponibles dans la littérature. Cette étude a montré que la relation thermodynamique (énantiotropie ou monotropie) entre les formes cristallines sous conditions ordinaires peut être modifiée en fonction de la température et de la pression. Ce résultat est important pour la production des médicaments car il montre comment une telle information peut être obtenue par des mesures simples et accessibles aux laboratoires de recherche industrielle, sans que ces derniers soient contraints d’expérimenter sous pression. La méthode topologique de construction de diagramme de phases a été validée ensuite en la comparant à une méthode expérimentale consistant à suivre, par analyse thermique, des transitions de phases en fonction de la pression. La méthode expérimentale a été appliquée à deux composés, la benzocaine, anesthésique local, et le chlorhydrate de cystéamine, médicament utilisé pour les cystinoses. Les deux formes étudiées de benzocaine présentent une relation énantiotrope qui se transforme en relation monotrope à haute pression. Une nouvelle forme cristalline (forme III) du chlorhydrate de cystéamine a été découverte au cours de ce travail. La relation thermodynamique entre cette forme III et la forme I est énantiotrope dans tout le domaine de température et de pression. De plus, le chlorhydrate de cystéamine, classé hygroscopique, a fait l’objet d’une étude quantitative de sa sensibilité à l’eau, montrant qu’il devient déliquescent sans formation préalable d’hydrate (...) / The development of a drug for a given therapeutic target requires several steps, which can be summarized by drug screening, a preclinical phase and a number of clinical phases. These steps allow the selection of an active substance and a verification of its therapeutic efficacy and toxicological safety. The latter two criteria define the quality of the drug, which once demonstrated, must be guaranteed throughout its shelf life. Quality is assessed through stability studies that are carried out with the raw material of the active substance (preformulation phase) and with the final product. The intrinsic stability of the active substance depends on its chemical and physical properties and their characterization is the core of the stability studies, which in addition consists of sensitivity studies of the active pharmaceutical ingredient (API) for environmental factors that can modify the intrinsic properties of the substance. The approach presented in this work is based on the one hand on the assessment of the chemical stability, i.e. the reactivity of APIs through chemical purity studies and forced degradation in solution, and on the other hand on the assessment of the physical stability. For the latter, crystalline polymorphism is of great importance, as is the ability of the API to form hydrates or solvates. The study of crystalline polymorphism is based on the construction of pressure-temperature phase diagrams in accordance with thermodynamic requirements leading to the stability condition domains of the different crystalline forms. The stability behavior of five APIs used or meant for oral applications has been studied as part of this work. The chemical analysis of tienoxolol, an antihypertensive drug, has demonstrated its sensitivity for hydrolysis and oxidation. Seven degradation products were identified and patterns of fragmentation have been established. Pressure-temperature phase diagrams have been constructed for bicalutamide and finasteride, drugs against prostate cancer, using a topological approach based on data available in the literature. The study demonstrates that the thermodynamic relationship (enantiotropy or monotropy) between crystalline forms under ordinary conditions can change depending on the pressure. This is important for drug development as it demonstrates how stability information can be obtained by standard laboratory measurements accessible to industrial research laboratories without the necessity to carry out experiments under pressure. The topological approach for the construction of phase diagrams has subsequently been validated by measuring transition temperatures as a function of pressure. Experiments have been carried out with benzocaine, a local anesthetic, and with cysteamine hydrochloride, a drug used against cystinosis. Two crystalline forms were observed in the case of benzocaine. They exhibit an enantiotropic relationship that becomes monotropic at high pressure. For cysteamine hydrochloride, a new crystalline form (form III) was discovered. The thermodynamic relationship between the new form III and the known form I is enantiotropic for the entire temperature and pressure range. Cysteamine hydrochloride’s sensitivity to water has been studied, as it is hygroscopic. It has been demonstrated that it becomes deliquescent in the presence of water and no trace of a hydrate has been found. Finally, a study combining thermal and chromatographic methods showed that, under the effect of temperature, cysteamine hydrochloride turns into cystamine in the solid as well as in the liquid state, The latter is known to be an important impurity of cysteamine hydrochloride. In conclusion, the approach developed in this work allowed to characterize the stability properties of a number of APIs and to determine the factors that may change these properties and influence the intrinsic stability (...)
|
Page generated in 0.0263 seconds