Spelling suggestions: "subject:"beryllium"" "subject:"berylliums""
1 |
Quaternary faulting in Clayton Valley, Nevada: implications for distributed deformation in the Eastern California shear zone-walker laneFoy, Travis A. 05 April 2011 (has links)
The eastern California shear zone (ECSZ) and Walker Lane belt represent an important inland component of the Pacific-North America plate boundary. Current geodetic data indicate accumulation of transtensional shear at a rate of ~9.2 ± 0.3 mm/yr across the region, more than double the total geologic rate (<3.5 mm/yr) for faults in the northern ECSZ over the late Pleistocene [Bennett et al., 2003, Kirby et al., 2006, Lee et al., 2009, Frankel et al., 2007]. Unraveling the strain puzzle of the Walker Lane is therefore essential to understanding both how deformation is distributed through the lithosphere along this transtensional part of the Pacific-North America plate boundary and how the plate boundary is evolving through time. The observed mismatch between geodetic and geologic slip rates in the central Walker Lane is characteristic of other active tectonic settings, including the nearby Mojave segment of the ECSZ [Oskin et al., 2008] and the Altyn Tagh fault in China [Cowgill, 2007]. In each case, lack of fault slip data spanning multiple temporal and spatial scales hinders interpretation of fault interactions and their implications for lithospheric dynamics. The discrepancy between geodetic and geologic slip rates in the central Walker Lane indicates that if strain rates have remained constant since the late Pleistocene [e.g. Frankel et al., in press], then the "missing" strain is distributed on structures other than the two major dextral faults at this latitude (Death Valley-Fish Lake Valley fault and White Mountains fault). Otherwise the region could presently be experiencing a strain transient similar to that of the nearby Mojave section of the ECSZ [e.g., Oskin et al., 2008], or the rate of strain accumulation could actually increasing over the late Pleistocene [e.g. Reheis and Sawyer, 1997; Hoeft and Frankel, 2010]. The Silver Peak-Lone Mountain extensional complex (SPLM), to which the Clayton Valley faults belong, is the prime candidate to account for the "missing" strain. The down-to-the-northwest orientation of the SPLM faults makes them the most kinematically suitable structures to accommodate the regional pattern of NW-SE dextral shear.
We use differential GPS to measure fault offset and terrestrial cosmogenic nuclide (TCN) geochronology to date offset landforms. Using these tools, we measure extension rates that are time-invariant, ranging from 0.1 ± 0.1 to 0.3 ± 0.1 mm/yr for fault dips of 30° and 60°. These rates are not high enough to account for the discrepancy between geologic and geodetic data in the ECSZ-Walker Lane transition zone. Based on geologic mapping and previously published geophysical data [Davis, 1981; Zampirro, 2005], deformation through Clayton Valley appears to be very widely-distributed. The diffuse nature of deformation leads to geologic slip rates that are underestimated due to the effects of off-fault deformation and unrecognized fault strands. Our results from Clayton Valley suggest that the discrepancy between geodetic and geologic strain rates at the latitude of the northern ECSZ is a result of long-term geologic rates that are underestimated. If the true geologic rates could be calculated, they would likely be significantly higher and therefore in closer agreement with geodetic data, as is the case everywhere else in the ECSZ north of the Garlock fault [Frankel et al., 2007a, in press; Kirby et al., 2008; Lee et al., 2009a].
|
2 |
Millennial-scale Variability of a Major East Antarctic Outlet Glacier during the Last GlaciationGuitard, Michelle 19 October 2015 (has links)
Ongoing retreat of Antarctica’s marine-based glaciers is associated with warm (~2° C) modified Circumpolar Deep Water intrusion onto the continental shelf, suggesting that Southern Ocean temperatures may influence Antarctic ice sheet stability. Understanding past cryosphere response to environmental forcing is crucial to modeling future ice sheet behavior. Of particular interest is the response of the East Antarctic Ice Sheet (EAIS), which stands to contribute ~20 m to global sea level. However, marine sediment sequences recording timing and variability of EAIS fluctuations through the last major climate shift, the Last Glacial Maximum (LGM), are either missing from the margin or have poor chronological control. Here we present three marine sediment cores that contain a record of pre-LGM fluctuations of the marine-based Lambert Glacier-Amery Ice Shelf (LG-AIS) system into Prydz Channel, East Antarctica. Analyses of core lithology, physical properties, cosmogenic nuclide concentration and diatom assemblage demonstrate that Prydz Channel was characterized by alternating open-marine and sub-shelf deposition, implying repeated LG-AIS fluctuations through the LGM. Our radiocarbon chronology demonstrates that LG-AIS fluctuations occurred on millennial timescales. Our record corroborates regional marine and terrestrial records, which demonstrate millennial scale variability in Antarctic Circumpolar Current strength, ice-rafted debris deposition, sea ice extent, Antarctic atmospheric temperature, and Southern Ocean sea surface temperature. This evidence suggests that the EAIS was sensitive to sub-orbital climate forcing in the past, and has implications for modeling future EAIS behavior.
|
3 |
Determining the Timing and Rate of Southeastern Laurentide Ice Sheet Thinning During the Last Deglaciation with 10Be DipsticksHalsted, Christopher T. January 2018 (has links)
Thesis advisor: Jeremy D. Shakun / The deglacial extent chronology of the southeastern Laurentide Ice Sheet as it retreated through the northeastern United States and southern Quebec has been well constrained by multiple lines of evidence. By comparison, few data exist to constrain the thinning history of the southeastern Laurentide, resulting in lingering uncertainty about volume changes and dynamics of this ice mass during the deglacial period. To address the lack of thinning information, my team collected 120 samples for in-situ `10Be exposure dating from various elevations at numerous mountains in New England and southern Quebec. Monte Carlo regression analyses using the analytical uncertainties of exposure ages from each mountain are used to determine the most-likely timing and rate of ice thinning for that location, a technique known as the ‘dipstick approach’. While this larger project is ongoing, I have processed and measured 10Be concentrations of 42 samples for this thesis and present my preliminary results and interpretation here. Exposure ages from Peekamoose Mt. in southern NY suggest ice thinning early in the deglacial period (~19.5 – 17.5 ka), near the onset of the Heinrich Stadial I cold period. Samples from Franconia Notch, NH, and Mt. Mansfield, VT, suggest ice thinning from approximately 15 – 13 ka in northern New England, roughly coincident with the Bølling-Allerød warm period. Exposure ages from each of the northern New England dipsticks are nearly identical within 1σ internal uncertainty, indicating that ice thinning was rapid. Higher elevation (>1200 m a.s.l.) samples from the northern New England mountains appear to contain inherited 10Be from previous periods of exposure, indicating a lack of glacial erosion on these surfaces. My high-elevation samples with inherited 10Be suggest that these summit landscapes were preserved beneath cold-based, non-erosive ice during the last glacial and deglacial periods. 40 samples that have yet to be processed will provide more information on ice thinning around Killington Mt., VT, Mt. Greylock, MA, Mt. Bigelow, ME, and Mt. Jacques-Cartier, Quebec. Ultimately, this information will be used to create probabilistic reconstructions of the lowering southeastern Laurentide ice surface during its retreat. / Thesis (MS) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
|
4 |
Identifying and quantifying sediment sources and sinks in the Root River, Southeastern MinnesotaStout, Justin Collin 01 May 2012 (has links)
Currently, our ability to predict the flux of fine sediment at the watershed scale is limited by the precision of erosion rate estimates for the many potential sources distributed throughout a landscape as well as our understanding of the connectivity of sediment pathways during transport. In absence of a robust predictive model which can be validated by measurements of sediment fluxes and use of geochemical tracers. Predicting fine sediment yield at the watershed scale requires multiple redundant lines of information. This thesis outlines the methods used, and the data sets collected in the Root River watershed in Southeastern Minnesota, all of which are multiple lines of evidence to the sediment dynamics in the Root River. The research indicates that the Root River is a very dynamic watershed. The hydrologic regime of the watershed has shifted over the last half century. Due to this shift sediment fluxes are very dependent of the magnitude and sequence of events. Geomorphic analysis of the landforms and the use of a developed tool, TerEx, indicate that many reaches of the river have easily accessible near-channel sources of sediment. Sediment fingerprinting results illustrate that source tracer concentrations are variable across the landscape, that as a whole, upland sources are still a major contributor to the suspended sediment load, and that in some sub-watersheds near-channel sources are dominate in the suspended load. Over all the channel-floodplain exchange exerts strong control on the flux of sediment through this river system.
|
5 |
Quaternary glaciations in the Lago Pueyrredón Valley, ArgentinaHein, Andrew S. January 2009 (has links)
This thesis develops a better knowledge of the extent and timing of glaciations in southern Argentina throughout the Quaternary. It provides a detailed understanding of successive major glacial outlet lobes in the Lago Pueyrredón valley. The glacial and glaciofluvial deposits in the valley, as elsewhere in the region, are extremely well-preserved and reflect punctuated glacial advances between ~ 1.1 Ma and ~ 17 ka. Several intermediate glaciations are undated, constrained by the limited time frame of radiocarbon age dating, the limited potential volcanic sites for K-Ar or 40Ar/39Ar age dating, and erosion and exhumation problems associated with cosmogenic-nuclide surface exposure ages on moraines. This thesis provides a new chronology for the mid-Quaternary glaciations based on methodological advances in cosmogenic-nuclide surface exposure age dating. This is done by deriving ages from glacial outwash terrace sediment and demonstrating their reliability. The work shows that for younger (i.e., last glacial) moraines, well-constrained ages can be derived from the common-practice of dating large boulders on the moraine surface. However, on older moraines, the ages so-derived become considerably scattered. This is interpreted to be caused primarily by boulder exhumation as a consequence of moraine erosion, resulting in shorter residence of some boulders at the surface relative to the moraine formation date. By contrast, glacial outwash surfaces in this area, if carefully chosen, can be shown to have undergone little aggradation or erosion, and thus have had long and consistent surface exposure since formation. Provided these surfaces can be stratigraphically linked with the glacial limits, they can provide good surface exposure ages. This has been convincingly confirmed in one location by a sequence of ages obtained from a 10Be concentration depth-profile which demonstrate the surface stability and lack of inherited nuclides. Using these methods, cosmogenic 10Be and 26Al surface exposure ages indicate successive major advances occurred at ~ 1.2 Ma, ~ 600 ka, ~ 260 ka and ~27 – 17.5 ka. These are correlated with global marine and ice core records.
|
6 |
Probing nuclear molecular analogue states in carbon, boron and beryllium isotopesLeask, Peter John January 2000 (has links)
No description available.
|
7 |
Terrestrial Archives of Meteoric 10BeAdrian A Singleton (11814842) 19 December 2021 (has links)
<div><div><div><p>The radionuclide 10Be is produced in the atmosphere and is delivered to Earth’s surface in meteoric rain and aerosols. The stable nuclide 9Be is present in trace concentrations within rocks in Earth’s crust and is released via chemical weathering. Together, these two isotopes have been employed to study a wide range of Earth processes. Here I explore new terrestrial archives of Be isotopes: cave speleothems and terrestrial Mn-oxides. Until this point, these archives have barely been studied. Only one published dataset of Be isotopes in cave speleothems exists (Lundblad, 2006), and to my knowledge, terrestrial manganese oxides are yet to be explored. However, since speleothems and Mn-oxides precipitate from groundwater, they have the potential to encode temporal variations in the 10Be/9Be ratio of water and colloids in the vadose zone.</p><p>I develop a framework for using the 10Be/9Be ratio in the dissolved phase and/or secondary weathering products as a metric of chemical weathering rate. I am motivated by several over-arching questions:</p><ol><li><p>1) Which factor, or factors, is/are dominant in controlling Be isotopes in speleothems and terrestrial Mn-oxides?</p></li><li><p>2) Can Be isotopes in speleothems be used as a metric of weathering rate over time, particularly across glacial/interglacial cycles?</p></li><li><p>3) Can Be isotopes be used to date the formation of terrestrial Mn-oxides?</p></li></ol><p>I measure Be-isotope concentrations in speleothems from Soreq Cave, Israel. By applying an equation that I derive in this thesis, I use the temporal variation in the speleothem10Be/9Be ratio to calculate chemical weathering rates over the last 168 ka. Chemical weathering varies with independent proxies for temperature. The weathering-temperature relationship can be fit to an Arrhenius relationship, and the calculated activation energy (Ea) matches other field-based estimates for feldspar, an abundant mineral in the soil above the cave. In the Appendices I present additional results of Be-isotope measurements in a flowstone from Buffalo Cave in South Africa, as well as Mn-oxides from the Appalachians.</p></div></div></div>
|
Page generated in 0.0341 seconds