Spelling suggestions: "subject:"beskärning"" "subject:"beskärnings""
1 |
Belastningsergonomi för trädgårdsmästareBlomkvist, Magnus January 2009 (has links)
<p>Enligt rapporter från Arbetsmiljöverket är arbetsrelaterade besvär som inte beror på arbetsplatsolycka vanliga inom trädgårdsnäringen. Orsakerna till besvären är huvudsakligen en följd av påfrestande arbetsställningar, korta upprepade arbetsmoment och tung manuell hantering. Syftet med denna litteraturstudie var att beskriva vad trädgårdsmästare bör tänka på vad gäller belastningsergonomi för att minska risken för skador i sitt arbete. Sökningar gjordes i databaserna Medline via PubMed, ScienceDirect och Academic Search Elite med sökorden horticulture, gardening, agriculture, ergonomics, pruning, shoveling, stoop, lifting technique and musculoskeletal injuries.</p><p>Resultatet visade att när det gäller lyftteknik och arbetsställningar bör man i möjligaste mån undvika att utföra dessa med en framåtböjd överkropp och raka ben. Denna kroppshållning visade sig vara sämre i jämförelse med andra tekniker och kroppspositioner med hänsyn taget till påfrestningsgraden av ländryggen.</p><p>Även vid grävning finns per automatik ett starkt inslag av att luta sig fram med böjd överkropp med den följden att ryggen utsätts för krafter som kan vara skadliga. En stor del i detta har spadens utformning. En adekvat design på redskapet kan minska påfrestningen.</p><p>Detsamma gäller inom beskärningsområdet. Utformningen av grensågar och sekatörer spelar en avsevärd roll i hur stor påfrestningen blir på muskler och leder i hand/arm och handled. Utöver ergonomisk formgivning är det också viktigt vid beskärningsarbetet att sekatören är bra slipad och att man även här tänker på arbetsställningen för att undvika onödig belastning. </p>
|
2 |
Belastningsergonomi för trädgårdsmästareBlomkvist, Magnus January 2009 (has links)
Enligt rapporter från Arbetsmiljöverket är arbetsrelaterade besvär som inte beror på arbetsplatsolycka vanliga inom trädgårdsnäringen. Orsakerna till besvären är huvudsakligen en följd av påfrestande arbetsställningar, korta upprepade arbetsmoment och tung manuell hantering. Syftet med denna litteraturstudie var att beskriva vad trädgårdsmästare bör tänka på vad gäller belastningsergonomi för att minska risken för skador i sitt arbete. Sökningar gjordes i databaserna Medline via PubMed, ScienceDirect och Academic Search Elite med sökorden horticulture, gardening, agriculture, ergonomics, pruning, shoveling, stoop, lifting technique and musculoskeletal injuries. Resultatet visade att när det gäller lyftteknik och arbetsställningar bör man i möjligaste mån undvika att utföra dessa med en framåtböjd överkropp och raka ben. Denna kroppshållning visade sig vara sämre i jämförelse med andra tekniker och kroppspositioner med hänsyn taget till påfrestningsgraden av ländryggen. Även vid grävning finns per automatik ett starkt inslag av att luta sig fram med böjd överkropp med den följden att ryggen utsätts för krafter som kan vara skadliga. En stor del i detta har spadens utformning. En adekvat design på redskapet kan minska påfrestningen. Detsamma gäller inom beskärningsområdet. Utformningen av grensågar och sekatörer spelar en avsevärd roll i hur stor påfrestningen blir på muskler och leder i hand/arm och handled. Utöver ergonomisk formgivning är det också viktigt vid beskärningsarbetet att sekatören är bra slipad och att man även här tänker på arbetsställningen för att undvika onödig belastning.
|
3 |
Undersökning av sågars skäregenskaper och praktisk jämförande testning : med handsågar för beskärning i växande träd / Cutting properties and comparative testing of saws : with manual pruning saws for living treesMellqvist, Daniel January 2020 (has links)
Föreliggande arbete syftade till att genom praktiska försök och teoretiska studier länka samman beskärningssågars effektivitet med dess biologiska påverkan av det växande trädet. Med målet att skapa en kunskapsgrund vid utveckling av nya sågar för trämaterial. Inom studien har en testutrustning använts för att provsåga tre kommersiellt tillgängliga beskärningssågar i två skilda trädslag. De uppkomma sågytorna analyserades med hjälp av optiska metoder. Resultaten från de praktiska sågförsöken och de påföljande optiska undersökningarna länkades till trädets biologiska reaktion på beskärning. Studien belyste ogynnsamma kraftförhållanden samt beskärningssågarnas inverkan på det levande trädet. Under studiens gång har även talrika uppslag för vidare undersökningar identifierats och definierats.
|
4 |
QPLaBSE: Quantized and Pruned Language-Agnostic BERT Sentence Embedding Model : Production-ready compression for multilingual transformers / QPLaBSE: Kvantiserad och prunerad LaBSE : Produktionsklar komprimering för flerspråkiga transformer-modellerLangde, Sarthak January 2021 (has links)
Transformer models perform well on Natural Language Processing and Natural Language Understanding tasks. Training and fine-tuning of these models consume a large amount of data and computing resources. Fast inference also requires high-end hardware for user-facing products. While distillation, quantization, and head-pruning for transformer models are well- explored domains in academia, the practical application is not straightforward. Currently, for good accuracy of the optimized models, it is necessary to fine-tune them for a particular task. This makes the generalization of the model difficult. If the same model has to be used for multiple downstream tasks, then it would require applying the process of optimization with fine-tuning for each task. This thesis explores the techniques of quantization and pruning for optimization of the Language-Agnostic BERT Sentence Embedding (LaBSE) model without fine-tuning for a downstream task. This should enable the model to be generalized enough for any downstream task. The techniques explored in this thesis are dynamic quantization, static quantization, quantize-aware training quantization, and head-pruning. The downstream performance is evaluated using sentiment classification, intent classification, and language-agnostic classification tasks. The results show that LaBSE can be accelerated on the CPU to 2.6x its original inference time without any loss of accuracy. Head-pruning 50% of the heads from each layer leads to 1.2x speedup while removing all heads but one leads to 1.32x speedup. A speedup of almost 9x is achieved by combining quantization with head-pruning with average 8% drop in accuracy on downstream evaluation tasks. / Transformer-modeller ger bra resultat i uppgifter som rör behandling av och förståelse för naturligt språk. Träning och finjustering av dessa modeller kräver dock en stor mängd data och datorresurser. Snabb inferensförmåga kräver också högkvalitativ hårdvara för användarvänliga produkter och tjänster. Även om destillering, kvantisering och head-pruning för transformer-modeller är väl utforskade områden inom den akademiska världen är den praktiska tillämpningen inte okomplicerad. För närvarande är det nödvändigt att finjustera de optimerade modellerna för en viss uppgift för att uppnå god noggrannhet där. Detta gör det svårt att generalisera modellerna. Om samma modell skall användas för flera uppgifter i sekvens så måste man tillämpa optimeringsprocessen med finjustering för varje uppgift. I den här uppsatsen undersöks tekniker för kvantisering och prunering för optimering av LaBSE- modellen (Language-Agnostic BERT Sentence Embedding) utan finjustering för en downstream-uppgift. Detta bör göra det möjligt att generalisera modellen tillräckligt mycket för alla efterföljande uppgifter. De tekniker som undersöks är dynamisk kvantisering, statisk kvantisering, samt kvantisering för träning och head-pruning. Prestandan i efterföljande led utvärderas med hjälp av klassificering av känslor, avsiktsklassificering och språkagnostiska klassificeringsuppgifter. Resultaten visar att LaBSE kan öka effektiviteten hos CPU:n till 2,6 gånger sin ursprungliga inferenstid utan någon förlust av noggrannhet. Om 50% av huvudena från varje lager tas bort leder det till 1,2 gånger snabbare hastighet, medan det leder till 1,32 gånger snabbare hastighet om alla huvuden utom ett tas bort. Genom att kombinera kvantisering med head-pruning uppnås en ökning av hastigheten med nästan 9x, med en genomsnittlig minskning av noggrannheten med 8% i utvärderingsuppgifter nedströms.
|
5 |
A Study on Fault Tolerance of Image Sensor-based Object Detection in Indoor Navigation / En studie om feltolerans för bildsensorbaserad objektdetektering i inomhusnavigeringWang, Yang January 2022 (has links)
With the fast development of embedded deep-learning computing systems, applications powered by deep learning are moving from the cloud to the edge. When deploying NN onto the devices under complex environments, there are various types of possible faults: soft errors caused by cosmic radiation and radioactive impurities, voltage instability, aging, temperature variations, etc. Thus, more attention is drawn on the reliability of the NN embedded system. In this project, we build a virtual simulation system in Gazebo to simulate and test the working of an embedded NN system in the virtual environment in indoor navigation. The system can detect objects in the virtual environment with the help of the virtual camera(the image sensor) and the object detection module, which is based on YOLO v3, and make corresponding control decisions. We also designed and simulated the corresponding error injection module according to the working principle of the image sensor, and tested the functionality, and fault tolerance of the YOLO network. At the same time, network pruning algorithm is also introduced to study the relationship between different degrees of network pruning and network fault tolerance to sensor faults. / Med den snabba utvecklingen av inbyggda datorsystem för djupinlärning flyttas applikationer som drivs av djupinlärning från molnet till kanten. När man distribuerar NN på enheterna under komplexa miljöer finns det olika typer av möjliga fel: mjuka fel orsakade av kosmisk strålning och radioaktiva föroreningar, spänningsinstabilitet, åldrande, temperaturvariationer, illvilliga angripare, etc. Därför är mer uppmärksamhet ritade om tillförlitligheten hos det inbyggda NN-systemet. I det här projektet bygger vi ett virtuellt simuleringssystem för att simulera och testa hur ett inbäddat NN-system fungerar i den virtuella miljö vi ställer upp. Systemet kan upptäcka objekt i den virtuella miljön enligt den virtuella kameran och objektdetekteringsmodulen, som är baserad på YOLO v3, och göra motsvarande kontrollstrategier. Vi designade och simulerade också motsvarande felinsprutningsmodul enligt bildsensorns arbetsprincip och testade funktionalitet, tillförlitlighet och feltolerans hos YOLO-nätverket. Samtidigt nätverk beskärningsalgoritm introduceras också för att studera sambandet mellan olika grader av nätverksbeskärning och nätverksfeltolerans.
|
6 |
Pruning a Single-Shot Detector for Faster Inference : A Comparison of Two Pruning Approaches / Beskärning av en enstegsdetektor för snabbare prediktering : En jämförelse av två beskärningsmetoder för djupa neuronnätBeckman, Karl January 2022 (has links)
Modern state-of-the-art object detection models are based on convolutional neural networks and can be divided into single-shot detectors and two-stage detectors. Two-stage detectors exhibit impressive detection performance but their complex pipelines make them slow. Single-shot detectors are not as accurate as two-stage detectors, but are faster and can be used for real-time object detection. Despite the fact that single-shot detectors are faster, a large number of calculations are still required to produce a prediction that not many embedded devices are capable of doing in a reasonable time. Therefore, it is natural to ask if single-shot detectors could become faster even. Pruning is a technique to reduce the size of neural networks. The main idea behind network pruning is that some model parameters are redundant and do not contribute to the final output. By removing those redundant parameters, fewer computations are needed to produce predictions, which may lead to a faster inference and since the parameters are redundant, the model accuracy should not be affected. This thesis investigates two approaches for pruning the SSD-MobileNet- V2 single-shot detector. The first approach prunes the single-shot detector by a large portion and retrains the remaining parameters only once. In the other approach, a smaller portion is pruned, but pruning and retraining are done in an iterative fashion, where pruning and retraining constitute one iteration. Beyond comparing two pruning approaches, the thesis also studies the tradeoff between model accuracy and inference speed that pruning induces. The results from the experiments suggest that the iterative pruning approach preserves the accuracy of the original model better than the other approach where pruning and finetuning are performed once. For all four pruning levels that the two approaches are compared iterative pruning yields more accurate results. In addition, an inference evaluation indicates that iterative pruning is a good compression method for SSD-MobileNet-V2, finding models that both are faster and more accurate than the original model. The thesis findings could be used to guide future pruning research on SSD-MobileNet- V2, but also on other single-shot detectors such as RetinaNet and the YOLO models. / Moderna modeller för objektsdetektering bygger på konvolutionella neurala nätverk och kan delas in i ensteg- och tvåstegsdetektorer. Tvåstegsdetektorer uppvisar imponerande detektionsprestanda, men deras komplexa pipelines gör dem långsamma. Enstegsdetektorer uppvisar oftast inte lika bra detektionsprestanda som tvåstegsdetektorer, men de är snabbare och kan användas för objektdetektering i realtid. Trots att enstegsdetektorer är snabbare krävs det fortfarande ett stort antal beräkningar för att få fram en prediktering, vilket inte många inbyggda enheter kan göra på rimlig tid. Därför är det naturligt att fråga sig om enstegsdetektorer kan bli ännu snabbare. Nätverksbeskärning är en teknik för att minska storleken på neurala nätverk. Huvudtanken bakom nätverksbeskärning är att vissa modellparametrar är överflödiga och inte bidrar till det slutliga resultatet. Genom att ta bort dessa överflödiga parametrar krävs färre beräkningar för att producera en prediktering, vilket kan leda till att nätverket blir snabbare och eftersom parametrarna är överflödiga bör modellens detektionsprestanda inte påverkas. I den här masteruppsatsen undersöks två metoder för att beskära enstegsdetektorn SSD-MobileNet-V2. Det första tillvägagångssättet går ut på att en stor del av detektorn vikter beskärs och att de återstående parametrarna endast finjusteras en gång. I det andra tillvägagångssättet beskärs en mindre del, men beskärning och finjustering sker på ett iterativt sätt, där beskärning och finjustering utgör en iteration. Förutom att jämföra två metoder för beskärning studeras i masteruppsatsen också den kompromiss mellan modellens detektionsprestanda och inferenshastighet som beskärningen medför. Resultaten från experimenten tyder på att den iterativa beskärningsmetoden bevarar den ursprungliga modellens detektionsprestanda bättre än den andra metoden där beskärning och finjustering utförs en gång. För alla fyra beskärningsnivåer som de två metoderna jämförs ger iterativ beskärning mer exakta resultat. Dessutom visar en hastighetsutvärdering att iterativ beskärning är en bra komprimeringsmetod för SSD-MobileNet-V2, eftersom modeller som både snabbare och mer exakta än den ursprungliga modellen går att hitta. Masteruppsatsens resultat kan användas för att vägleda framtida forskning om beskärning av SSD-MobileNet-V2, men även av andra enstegsdetektorer, t.ex. RetinaNet och YOLO-modellerna.
|
7 |
Optimizing web camera based eye tracking system : An investigating of the effect of network pruning and image resolution / Optimera webbkamerabaserat ögonspårningssystem : En undersökning av effekten av beskärning och inmatning av olika bildupplösningarSvensson, Olle January 2021 (has links)
Deep learning has opened new doors to things that were only imaginable before. When it comes to eye tracking, the advances in deep learning have made it possible to predict gaze using the integrated camera that most mobile and desktop devices have nowadays. This has enabled the technique to move from needing advanced eye tracking equipment to being available to everyone with mobile and desktop devices. To make a more accurate gaze prediction more advanced neural network is needed and more computational power. This study investigates how a convolutional neural network used for eye tracking using a desktop web camera could be optimized in terms of computational cost while not compromising the accuracy of the network. In this work, two different methods to decrease the computational cost are investigated and evaluated how it impacts the accuracy, namely pruning and reducing the input image resolution fed to the convolutional neural network. Pruning is when weights in a neural network are removed to make the network sparser. The result shows that pruning works for regression tasks like eye tracking using a desktop web camera without compromising accuracy. When the convolutional neural network is pruned to 80% of its original weights in the convolutional layers, the accuracy improves by 6.8% compared to the same network that has not been pruned. The result also shows that reducing the number of pixels in the input images also improves the accuracy of the neural network. This is investigated further and by injecting noise into the input images used for testing, which shown that the networked trained with a lower resolution image for the face input is more robust to noise than the baseline model. This could be one explanation for the improvement when the face image is downsampled to a lower resolution. It is also shown that a model trained with reduced face and eyes input by a factor of four decreases its computational time by 85.7% compared to a baseline model. / Djuptinlärning har öppnat nya dörrar till saker som bara var tänkbara innan. När det gäller ögonspårning har framstegen inom djupinlärning gjort det möjligt att förutsäga blicken med hjälp av den integrerade kameran som de flesta mobil- och datorenheter har idag. Detta har gjort det möjligt för tekniken att gå från att behöva avancerad ögonspårningsutrustning till att vara tillgänglig till alla med mobil och datorenheter. För att göra en mer exakt ögonspårning behövs mer avancerat neuralt nätverk och mer beräkningskraft. Den här studien undersöker hur ett convolutional neural network som används för ögonspårning med hjälp av dator webbkamera skulle kunna optimeras vad gäller beräkningskostnader men samtidigt inte äventyrar nätverkets noggrannhet. I detta arbete undersöks två olika metoder för att minska beräkningskostnaden och utvärderar hur det påverkar noggrannheten, närmare bestämt beskärning och komprimering av bildupplösningen av bilderna som matas till det neurala nätverket. Beskärning är när vikter i ett neuralt nätverk tas bort för att göra nätverket glesare. Beskärning har, såvitt vi vet, aldrig testats på regressionsuppgifter som ögonspårning på dator. Resultatet visar att beskärning fungerar för regressionsuppgifter som ögonspårning med en dator webbkamera utan att kompromettera med noggrannheten. När det neurala nätverket beskärs till 80% av dess ursprungliga vikter i convolutional lagrena förbättras noggrannheten med 6.8% jämfört med samma nätverk som inte har beskärts. Resultatet visar också att komprimering av bildupplösningen också förbättrar neuralnätets noggrannhet. Detta undersöks vidare och genom att injicera brus i bilderna testbilderna som matas till det neurala nätverket, vilket visade att nätverket som tränats med en reducerad bilder med en faktor fyra är mer robusta vad gäller brus än basmodellen. Detta kan vara en förklaring till förbättringen när bilden på ansiktet komprimeras till en lägre upplösning. Det visas också att en modell som tränats med minskat ansikts- och ögoninmatning med en faktor fyra minskar dess beräkningstid med 85.7% jämfört med en basmodell.
|
8 |
Distributed Intelligence for Multi-Robot Environment : Model Compression for Mobile Devices with Constrained Computing Resources / Distribuerad intelligens för multirobotmiljö : Modellkomprimering för mobila enheter med begränsade datorresurserSouroulla, Timotheos January 2021 (has links)
Human-Robot Collaboration (HRC), where both humans and robots work in the same environment simultaneously, is an emerging field and has increased massively during the past decade. For this collaboration to be feasible and safe, robots need to perform a proper safety analysis to avoid hazardous situations. This safety analysis procedure involves complex computer vision tasks that require a lot of processing power. Therefore, robots with constrained computing resources cannot execute these tasks without any delays, thus for executing these tasks they rely on edge infrastructures, such as remote computational resources accessible over wireless communication. In some cases though, the edge may be unavailable, or connection to it may not be possible. In such cases, robots still have to navigate themselves around the environment, while maintaining high levels of safety. This thesis project focuses on reducing the complexity and the total number of parameters of pre-trained computer vision models by using model compression techniques, such as pruning and knowledge distillation. These model compression techniques have strong theoretical and practical foundations, but work on their combination is limited, therefore it is investigated in this work. The results of this thesis project show that in the test cases, up to 90% of the total number of parameters of a computer vision model can be removed without any considerable reduction in the model’s accuracy. / Människa och robot samarbete (förkortat HRC från engelskans Human-Robot Collaboration), där både människor och robotar arbetar samtidigt i samma miljö, är ett växande forskningsområde och har ökat dramatiskt över de senaste decenniet. För att detta samarbetet ska vara möjligt och säkert behöver robotarna genomgå en ordentlig säkerhetsanalys så att farliga situationer kan undvikas. Denna säkerhetsanalys inkluderar komplexa Computer Vision uppgifter som kräver mycket processorkraft. Därför kan inte robotar med begränsad processorkraft utföra dessa beräkningar utan fördröjning, utan måste istället förlita sig på utomstående infrastruktur för att exekvera dem. Vid vissa tillfällen kan dock denna utomstående infrastruktur inte finnas på plats eller vara svår att koppla upp sig till. Även vid dessa tillfällen måste robotar fortfarande kunna navigera sig själva genom en lokal, och samtidigt upprätthålla hög grad av säkerhet. Detta projekt fokuserar på att reducera komplexiteten och det totala antalet parametrar av för-tränade Computer Vision-modeller genom att använda modellkompressionstekniker så som: Beskärning och kunskapsdestilering. Dessa modellkompressionstekniker har starka teoretiska grunder och praktiska belägg, men mängden arbeten kring deras kombinerade effekt är begränsad, därför är just det undersökt i detta arbetet. Resultaten av det här projektet visar att up till 90% av det totala antalet parametrar hos en Computer Vision-modell kan tas bort utan någon noterbar försämring av modellens säkerhet.
|
9 |
Evaluation of Pruning Algorithms for Activity Recognition on Embedded Machine Learning / Utvärdering av beskärningsalgoritmer för aktivitetsigenkänning på inbäddad maskininlärningNamazi, Amirhossein January 2023 (has links)
With the advancement of neural networks and deep learning, the complexity and size of models have increased exponentially. On the other hand, advancements of internet of things (IoT) and sensor technology have opened for many embedded machine learning applications and projects. In many of these applications, the hardware has some constraints in terms of computational and memory resources. The always increasing popularity of these applications, require shrinking and compressing neural networks in order to satisfy the requirements. The frameworks and algorithms governing the compression of a neural network are commonly referred to as pruning algorithms. In this project several pruning frameworks are applied to different neural network architectures to better understand their effect on the performance as well as the size of the model. Through experimental evaluations and analysis, this thesis provides insights into the benefits and trade-offs of pruning algorithms in terms of size and performance, shedding light on their practicality and suitability for embedded machine learning. The findings contribute to the development of more efficient and optimized neural networks for resource constrained hardware, in real-world IoT applications such as wearable technology. / Med framstegen inom neurala nätverk och djupinlärning har modellernas komplexitet och storlek ökat exponentiellt. Samtidigt har framsteg inom Internet of Things (IoT) och sensorteknik öppnat upp för många inbyggda maskininlärningsapplikationer och projekt. I många av dessa applikationer finns det begränsningar i hårdvaran avseende beräknings- och minnesresurser. Den ständigt ökande populariteten hos dessa applikationer kräver att neurala nätverk minskas och komprimeras för att uppfylla kraven. Ramverken och algoritmerna som styr komprimeringen av ett neuralt nätverk kallas vanligtvis för beskärningsalgoritmer. I detta projekt tillämpas flera beskärningsramverk på olika neurala nätverksarkitekturer för att bättre förstå deras effekt på prestanda och modellens storlek. Genom experimentella utvärderingar och analys ger denna avhandling insikter om fördelarna och avvägningarna med beskärningsalgoritmer vad gäller storlek och prestanda, och belyser deras praktiska användbarhet och lämplighet för inbyggd maskininlärning. Resultaten bidrar till utvecklingen av mer effektiva och optimerade neurala nätverk för resursbegränsad hårdvara i verkliga IoT-applikationer, såsom bärbar teknik.
|
Page generated in 0.0697 seconds