Spelling suggestions: "subject:"beta amylase"" "subject:"meta amylase""
1 |
Molekulare Untersuchungen zum Stärkeabbau in vegetativen Pflanzenteilen / Molecular investigations in starch degradation in plantsScheidig, Andreas January 2006 (has links)
In der vorliegenden Arbeit wurden cDNAs, kodierend für bisher unbekannte stärkeabbauende Enzyme, aus Kartoffel isoliert und funktionell analysiert. Die Isolation der cDNAs erfolgte mit Hilfe eines Systems, welches sich der funktionellen Expression von cDNA-Bibliotheken in E. coli bediente. Die mit diesem System zur Expression gebrachten cDNA-Bibliotheken wurden im Rahmen dieser Arbeit hergestellt. Zum einen handelte es sich um eine blattspezifische Phagen-cDNA-Bibliothek (Proben wurden während des Tag/Nacht Übergangs genommen), zum anderen um eine knollenspezifische cDNA-Bibliothek aus kaltgelagerten Knollen. Nach der Überführung der Phagen-Bibliotheken in Plasmid-Bibliotheken wurden diese funktionell in dem E. coli Stamm KV832 exprimiert. Der Stamm KV832 wurde aufgrund seiner Fähigkeit, lineare Glucane zu akkumulieren, ausgewählt. Werden Glucan akkumulierende KV832 Kolonien mit Jod bedampft, so zeigen diese eine typische Blaufärbung. Nach der Expression der Plasmid-Bibliotheken in KV832 wurden solche Kolonien weiter untersucht, welche in ihrer Färbung von den blauen Kolonien abwichen. Mittels eines zweiten E. coli Stamms, PGM −, welcher ebenfalls in der Lage ist, lineare Glucane zu akkumulieren, wurden die Ergebnisse für KV832 bestätigt.
Die funktionelle Expression der Bibliotheken führte zur Isolation einer Reihe von unbekannten cDNAs. Zwei dieser cDNAs wurden im Rahmen dieser Arbeit weiterführend untersucht. Zum einen handelte es sich um eine cDNA, die für eine bis dahin unbekannte β-Amylase aus Kartoffel kodierte und deren Homolog aus Arabidopsis (CT-BMY) im Laufe dieser Arbeit von Lao et al. (1999) veröffentlicht wurde, zum anderen um eine cDNA, die für ein unbekanntes Enzym kodierte (DSD10). Das Arabidopsis Homolog zu DSD10 wurde im Zuge der Arabidopsis Genominitiative Ende 2000 publiziert.
Im Rahmen dieser Arbeit konnte gezeigt werden, dass die isolierte β-Amylase cDNA für eine funktionelle β-Amylase kodiert und dieses Enzym in der Lage ist, neben löslicher auch rohe Stärke anzugreifen. Lokalisationsexperimente zeigten, dass das Enzym in isolierte Erbsenchloroplasten importiert wurde und dass die 100 N-terminalen Aminosäuren für den Import in die Plastiden ausreichten. Die β-Amylase wurde als PCT-BMYI bezeichnet. Die »antisense«-Inhibierung von PCT-BMYI führte zu einem Hochstärke-Phänotyp der Blätter, sowie zu einem Anstieg der Trockenmasse. Der Hochstärke-Phänotyp ist auf eine Reduktion der Stärkemobilisierung und die daraus folgende Akkumulation der Stärke während der Vegetationsperiode zurückzuführen. Damit konnte erstmals die physiologische Bedeutung einer β-Amylase für den Abbau der transitorischen Stärke gezeigt werden. Kein Einfluss zeigte die »antisense« Inhibierung von PCT-BMYI auf den kälteinduzierten Abbau der Speicherstärke in Knollen. Es konnte auch kein Unterschied im Keimverhalten oder der Entwicklung der neuen Pflanze beobachtet werden.
Ein Teil der Ergebnisse zu PCT-BMYI wurde bereits publiziert (Scheidig et al., 2002).
Die isolierten cDNAs dsd10, sgeI (die Volllängen cDNA zu dsd10) und das Arabidopsis Homolog asgeI kodieren für Enzyme, welche α-Amylase-Aktivität besitzen, aber keine Homologie zu bekannten α-Amylasen aufweisen. Ein mögliches Glucoamylase Motiv erwies sich für die Aktivität des Proteins als essentiell. Lokalisationsexperimente deuteten auf den Import des SGEI Proteins in isolierte Erbsenchloroplasten hin. Die »antisense«-Inhibierung von sgeI führte in den entsprechenden Linien zu einem Hochstärke-Phänotyp in Blättern, einem Anstieg der Trockenmasse in Blättern, sowie zu größeren Stärkekörnern in einer der untersuchten Linien. Ein nicht erwarteter Effekt zeigte sich in Blättern der entsprechenden Linien, welche für längere Zeit dunkel gehalten wurden. Die Blätter der untransformierten Kontrolle waren abgestorben, wohingegen die Blätter der SGEI »antisense« Linien grün und vital erschienen. Die α- und β-Amylase-Aktivität war in Blättern der SGEI »antisense« Linien reduziert, weshalb eine genaue Zuordnung der Funktion von SGEI nicht möglich war. Die vorliegenden Ergebnisse zu den SGEI »antisense« Linien deuten aber darauf hin, dass der beobachtete Hochstärke-Phänotyp nicht alleine auf die Reduktion der β-Amylase-Aktivität zurückzuführen ist. Ein Einfluss von SGEI auf den kälteinduzierten Abbau der Speicherstärke konnte nicht beobachtet werden. Es konnte auch hier kein Unterschied im Keimverhalten oder der Entwicklung der neuen Pflanze beobachtet werden. / In the presented work, previously unidentified starch metabolic genes from potato were isolated and functionally characterized. Gene isolation proceeded using a cDNA library system that allows the functional expression of potato genes in E. coli. The generated libraries included 1) a phage vector-based, leaf-specific cDNA library generated from mRNA isolated during the day/night transition and 2) a phage vector-based, tuber-specific cDNA library generated from mRNA isolated from potato tubers after cold storage. After in vivo mass Excision of the phage library, the resulting plasmid libraries were functionally expressed in E. coli strain, KV832. This strain was selected for its ability to accumulate linear glucans. Reaction with iodine vapour in glucan-producing KV832 colonies results in a characteristic blue hue. The expression library was thus screened for colonies in which the blue hue was diminished, a potential indicator of the expression of starch degrading enzymes. Library clones from the selected colonies were reconfirmed in PGM−, an alternative E. coli that also accumulates linear glucans.
The above expression and screening program allowed isolation of a series of previously uncharacterized cDNA clones. Two such clones were investigated in depth in the remainder of the presented work. The first of these cDNA clones comprised a gene for a hitherto unidentified β-amylase function. The second encoded a functional truncation of a previously unknown enzyme, and was designated DSD10. The full length version of this gene was isolated and designated sgeI. Homologs of both full-length genes have since been identified in Arabidopsis: the former was published as CT-BMY by Lao et al. (1999), while the latter was published in the course of the Arabidopsis Genome Initiative at the end of 2000.
Demonstrated in the course of this work is that the first of these isolated amylase cDNAs encodes a functional β-amylase enzyme that hydrolyses raw as well as soluble starch. Enzyme localization experiments showed that the 100 N-terminal amino acids are sufficient to effect import into isolated pea chloroplasts, which is supportive of plastid-targeted localization in potato. This novel β-amylase was designated as PCT-BMYI. Whole-plant antisense inhibition of PCT-BMYI in the potato plant resulted in a high-starch phenotype in the leaf, as well as to an increase in leaf dry weight. The high-starch phenotype was caused by a reduction in starch mobilization and the resulting accumulation of starch during the vegetative phase. This represents the first demonstration of the physiological role of a β-amylase in the metabolism of transitory starch deposits. In contrast to its role in the leaf, antisense inhibition of PCT-BMY1 resulted in no observable alteration in cold-induced metabolism of storage starch in the potato tuber. Additionally, inhibition of PCT-BMY1 resulted in no observable alteration in tuber sprouting, nor in the development of the potato plants.
A portion of the results regarding PCT-BMYI have been published (Scheidig et al., 2002).
The second isolated gene, sgeI, and its Arabidopsis homolog, asgeI, encode enzymes with α-amylase activity, but neither show homology to known α-amylases. A putative glucoamylase motif, however, was found to be essential for activity of the sgeI gene product, SGEI. As was the case for PCT-BMY1, localization experiments demonstrated import of SGEI into isolated pea chloroplasts, again suggesting plastid localization in potato. Antisense inhibition of sgeI in potato lead to a high-starch phenotype in the leaf and an increase in the leaf dry weight, but also to an increase in starch granule size in one of the studied potato lines. Longer term storage of such lines in the absence of light resulted in an unexpected phenomenon. While the wild type control leaves withered and died within days, the sgeI antisense lines appeared green and healthy for over two weeks. The reason for this may be the metabolism of the stored, hyper-accumulated starch, both due to and despite the initial antisense suppression of sgeI. The exact roll of SGEI in these experiments was complicated by the observed simultaneous suppression of both α- und β-amylase activity in the sgeI antisense lines. The clear quantitative differences in the observed high-starch phenotypes of the sgeI and PCT-BMY1 lines, however, suggest that these phenotypic differences were not due to suppression of β-amylase activity alone. SGEI suppression resulted in no observed differences in sprouting, development of potato plants, or in the metabolism of storage starch in the potato tuber.
|
2 |
Variação hormonal correlacionada à expressão de enzimas ligadas ao metabolismo do amido durante o desenvolvimento e amadurecimento da manga (Mangifera indica cv Keitt) / Correlation with hormonal variation and genes expression of enzimes involved in starch metabolic during during development and ripening of mango (Mangifera indica cv Keitt)Koike, Claudia Mitsue 28 September 2007 (has links)
O desenvolvimento e o amadurecimento de frutos são processsos complexos e organizados, ondeo fitormônios, como o ácido indol-3-acético (AIA), o ácido abscísico (ABA) e o etileno desempenham papel relevante. Dentro os processos característicos do amadurecimento, a degradação do amido apresenta impacto direto sobre a qualidade da manga, sendo practicamente todo degradao a síntese de sacarose. Várias enzimas participam da degradação do grânulo de amido, como também em bananas. A mobilização do amido em mangas Keitt parece estar dissociada temporalmente da evolução do etileno; e as variações nos níveis de AIA e ABA sugerem um possível papel na sinalização para mobilização do amido. A biossíntese da sacarose foi atrasada pelo 1-MCP, um antagonista do etileno, sugerindo redução na velocidade do fluxo de carbono do amido para síntese da sacarose que pode ser, resultante das alterações no metabolismo da maltose proveniente da degradação do amido. / The fruit development and ripening are organized and complex processes where phytohormones, like indol-3-acetic acid (IAA), abscisc acid (ABA) and ethylene have a pivotal role. In mango fruit one of the main metabolisms that have direct impact in the mango quality is the starch degradation, practically being all degrated the synthesis of sacarose. Some enzymes participate of the degradation, as hidrolases (alfa and beta-amylases, disproportionating enzymes) and phosphorylases, described also in bananas. The mobilization of the starch in Keitt mangoes it does not seem to be temporally associated with ethylene; and variations in the IAA and ABA levels suggest their possible role in the signalling for the starch. Sucrose biosynthesis was delayed by 1-MCP indicating a reduction in the speed of the carbon flux from the starch that it can be, resultant of the alterations in the metabolism of maltose provenient from the starch degradation.
|
3 |
Variação hormonal correlacionada à expressão de enzimas ligadas ao metabolismo do amido durante o desenvolvimento e amadurecimento da manga (Mangifera indica cv Keitt) / Correlation with hormonal variation and genes expression of enzimes involved in starch metabolic during during development and ripening of mango (Mangifera indica cv Keitt)Claudia Mitsue Koike 28 September 2007 (has links)
O desenvolvimento e o amadurecimento de frutos são processsos complexos e organizados, ondeo fitormônios, como o ácido indol-3-acético (AIA), o ácido abscísico (ABA) e o etileno desempenham papel relevante. Dentro os processos característicos do amadurecimento, a degradação do amido apresenta impacto direto sobre a qualidade da manga, sendo practicamente todo degradao a síntese de sacarose. Várias enzimas participam da degradação do grânulo de amido, como também em bananas. A mobilização do amido em mangas Keitt parece estar dissociada temporalmente da evolução do etileno; e as variações nos níveis de AIA e ABA sugerem um possível papel na sinalização para mobilização do amido. A biossíntese da sacarose foi atrasada pelo 1-MCP, um antagonista do etileno, sugerindo redução na velocidade do fluxo de carbono do amido para síntese da sacarose que pode ser, resultante das alterações no metabolismo da maltose proveniente da degradação do amido. / The fruit development and ripening are organized and complex processes where phytohormones, like indol-3-acetic acid (IAA), abscisc acid (ABA) and ethylene have a pivotal role. In mango fruit one of the main metabolisms that have direct impact in the mango quality is the starch degradation, practically being all degrated the synthesis of sacarose. Some enzymes participate of the degradation, as hidrolases (alfa and beta-amylases, disproportionating enzymes) and phosphorylases, described also in bananas. The mobilization of the starch in Keitt mangoes it does not seem to be temporally associated with ethylene; and variations in the IAA and ABA levels suggest their possible role in the signalling for the starch. Sucrose biosynthesis was delayed by 1-MCP indicating a reduction in the speed of the carbon flux from the starch that it can be, resultant of the alterations in the metabolism of maltose provenient from the starch degradation.
|
4 |
The analysis and reduction of starch in sugarcane by silencing ADP-glucose pyrophosphorylase and over-expressing β-amylaseFerreira, Stephanus Johannes 12 1900 (has links)
Thesis (MSc (Plant Biotechnology))--University of Stellenbosch, 2007. / Sugarcane is cultivated because of the high levels of sucrose it stores in its
internodes. Starch metabolism has been a neglected aspect of sugarcane research
despite the problems caused by it during sugarcane processing. Currently there is no
information available on the starch content in different South African commercial
sugarcane varieties. This project had two main aims of which the first was to
determine the starch content in the internodal tissues of six commercial sugarcane
varieties. The activities of ADP-Glucose Pyrophosphorylase (AGPase) and β-
amylase were also determined. The second aim of the project was to manipulate
starch metabolism in sugarcane using transgenesis. To achieve this, transformation
vectors for the down-regulation of AGPase activity and over-expression of β-amylase
activity were designed. These vectors were then used to transform sugarcane calli
and the results were analysed in suspension cultures. Starch levels in sugarcane
internodal tissue increased more than 4 times from young to mature internodes.
There were also large differences between varieties. When mature tissues of
different varieties were compared, their starch concentration varied between 0.18
and 0.51 mg g-1 FW, with the majority of the varieties having a starch concentration
between 0.26 and 0.32 mg g-1 FW. NCo376’s starch concentration was much lower
than the rest at 0.18 mg g-1 FW and N19’s was much higher at 0.51 mg. g-1 FW.
There was also a very strong correlation between starch and sucrose concentration
(R2 = 0.53, p ≤ 0.01) which could be due to the fact that these metabolites are
synthesized from the same hexose-phosphate pool. No correlation was evident
between starch concentration and AGPase activity. This was true for correlations
based on either tissue maturity or variety. β-amylase activity expressed on a protein
basis was almost 5 times higher in the young internodes compared to mature internodes, suggesting that carbon might be cycled through starch in these
internodes. AGPase activity in the transgenic suspension cultures was reduced by
between 0.14 and 0.54 of the activity of the wild type control. This reduction led to a
reduction in starch concentration of between 0.38 and 0.47 times that of the wild type
control. There was a significant correlation between the reduction in AGPase activity
and the reduction in starch (R2 = 0.58, p ≤ 0.05). β-amylase activity in the transgenic
suspension cultures was increased to 1.5-2 times that of the wild type control. This
led to a reduction in starch concentration of between 0.1 and 0.4 times that of the
wild type control. Once again the increase in β-amylase activity could be correlated to
the reduction in starch concentration of the transgenic suspension cultures (R2 =
0.68, p ≤ 0.01). In both experiments there was no significant effect on sucrose
concentration.
|
5 |
Aplicação de CLEA de β-amilase de cevada na produção de maltose a partir de amido residual do bagaço de mandioca em reator de fluxo em vórticesSilva, Rafael de Araujo 31 March 2015 (has links)
Submitted by Izabel Franco (izabel-franco@ufscar.br) on 2016-09-21T14:30:40Z
No. of bitstreams: 1
DissRASac.pdf: 11251604 bytes, checksum: 6c180d000983f8c0f5a08597c2d53676 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-09-27T20:04:15Z (GMT) No. of bitstreams: 1
DissRASac.pdf: 11251604 bytes, checksum: 6c180d000983f8c0f5a08597c2d53676 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-09-27T20:04:24Z (GMT) No. of bitstreams: 1
DissRASac.pdf: 11251604 bytes, checksum: 6c180d000983f8c0f5a08597c2d53676 (MD5) / Made available in DSpace on 2016-09-27T20:10:13Z (GMT). No. of bitstreams: 1
DissRASac.pdf: 11251604 bytes, checksum: 6c180d000983f8c0f5a08597c2d53676 (MD5)
Previous issue date: 2015-03-31 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Cassava is cultivated worldwide, being Brazil the fourth largest producer. The root
industrial processing in the country, aiming to obtain mainly flour and starch, generates
carbohydrate-rich residues (e.g., starch, cellulose, and hemicellulose), which could be
used to produce value-added products by enzymatic route, mainly using immobilized
enzymes that are more operationally stable, allowing to be easily recovered and reused in
the process. Thus, this work aimed the biotransformation of residual starch from cassava
processing in maltose, using immobilized β-amylase in a Couette–Taylor–Poiseuille
vortex flow reactor, which can promote perfect mixture under lower shear stress in the
reactional medium compared to the conventional stirred-tank reactor. Cassava bagasse
and peel of two starch-processing industries from São Paulo State were physicalchemically
characterized and showed about 47% and 55% (dry mass) of residual starch,
respectively. The starch was enzymatically extracted from the residues using a α-
amylase, followed by maltose production catalyzed by immobilized barley β-amylase.
Among the immobilization methods studied in this work, the best one for β-amylase was
protein aggregation using bovine serum albumin (BSA) or soybean protein (PS) as
protein feeder, followed by cross-linking with glutaraldehyde (CLEA technique). This
protocol yielded immobilized β-amylase with 82.67% and 53.26% of recovered activity,
respectively. Besides, the CLEAs were highly stables at 40oC, retaining more than 80%
of the initial activity after 12 hours. The maltose syrup production from starch was
performed using a Couette–Taylor–Poiseuille vortex flow reactor, in order to evaluate the
β-amylase CLEAs (in this case CLEA of β-amylase prepared with soybean protein, here
named CLEA-β-PS). It was achieved around 70% of maltose conversion in a short
reaction time (4 hours), showing that is viable the use of residual starch as raw material
for the production of maltose catalyzed by β-amylase CLEA in a Couette–Taylor–
Poiseuille vortex flow reactor. / A mandioca é cultivada em todo mundo, sendo o Brasil o quarto maior produtor. O
processamento industrial da raiz no país visa principalmente à produção de farinha e
fécula, gerando resíduos ricos em carboidratos (amido, celulose, hemicelulose) que
poderiam gerar produtos de valor agregado por biocatálise enzimática, particularmente
usando enzimas imobilizadas, por serem mais estáveis operacionalmente e poderem ser
facilmente recuperadas e reutilizadas no processo. Assim, este trabalho teve como
objetivo a biotransformação do amido residual dos resíduos do processamento da
mandioca em maltose, usando a enzima β-amilase imobilizada em reator de fluxo em
vórtices (RFV) Couette–Taylor–Poiseuille, reator este que pode promover mistura
perfeita com menor tensão cisalhante no meio reacional, comparado a um reator de
mistura perfeita convencional. Os resíduos bagaço e casca de mandioca de duas
fecularias do interior de São Paulo foram caracterizados físico-quimicamente e
apresentaram teores de amido por volta de 47% e 55% (b.s.), respectivamente. A extração
do amido dos resíduos foi realizada enzimaticamente utilizando uma α-amilase, então, o
amido liquefeito foi utilizado na produção de maltose catalisada pela β-amilase de cevada
imobilizada. Dentre os métodos de imobilização estudados, o mais satisfatório para a
imobilização de β-amilase foi a reticulação de enzimas agregadas (CLEA), utilizando
albumina de soro bovino (BSA) ou proteína de soja (PS) como proteínas inertes, retendo
82,67% e 53,26% da atividade oferecida, respectivamente. Os CLEAs apresentaram
estabilidades ao pH ligeiramente maiores que a β-amilase livre em seus respectivos
valores de pH mais estáveis. Além disso, os CLEAs foram muito estáveis a 40ºC, retendo
mais de 80% da atividade inicial após 12 horas de encubação. A conversão do amido em
maltose foi realizada em um RFV, com a finalidade de estudar seu comportamento frente
aos CLEAs de β-amilase (neste estudo CLEA de β-amilase preparado na presença de
proteína de soja, aqui nomeado CLEA-β-PS). A conversão de amido em maltose foi de
aproximadamente 70% em curto tempo de reação (4 horas), demonstrando a viabilidade
do uso de amido residual como matéria-prima para a produção de maltose catalisada por
CLEA de β-amilase em reator de fluxo em vórtices de Couette–Taylor–Poiseuille.
Palavras chave: resíduos de mandioca, amido, maltose, beta-amilase de cevada,
imobilização enzimática, CLEA, reator de fluxo em vórtices.
|
Page generated in 0.0558 seconds