Spelling suggestions: "subject:"detained"" "subject:"detain""
1 |
Mechanismen des Elektronentransfers in molekularen SystemenFuchs, Christofer 12 February 1997 (has links)
Elektronentransfer spielt eine wichtige Rolle in vielen Bereichen der
Physik und Chemie. Ausgehend von rein klassischen Beschreibungen wie dem
beruehmten Marcus-Modell bis hin
zu komplexen quantenmechanischen Ansaetzen unter Beruecksichtigung
vieler Reaktionskoordinaten wurden viele Modelle aufgestellt, um den
Elektronentransfer zu beschreiben und Transferraten zu berechnen.
Dass diese Modelle meist nur in einer begrenzten Anzahl von
¨Szenarien¨ erfolgreich sind liegt an der Fuelle von
Mechanismen, die den Elektronentransfer beeinflussen, je nachdem, welches
System mit seinen charakteristischen Zustandsenergien und
Kopplungselementen betrachtet wird, und welche aeusseren Bedingungen wie
Temperatur oder Loesungsmittel herrschen. Mechanismen wie ¨thermisch
aktiviertes Tunneln¨ beeinflussen beobachtbare Phaenomenen wie
¨Trapping¨.
In dieser Arbeit wird die Elektronentransferdynamik mit
Bewegungsgleichungen fuer eine reduzierte Dichtematrix beschrieben,
deren Herleitung ausgehend von der Liouville-von Neumann-Gleichung
ueber die Nakayima-Zwanzig-Gleichung fuehrt.
Durch Ankopplung an ein Waermebad werden dissipative Effekte integriert.
Zunaechst wird diese Theorie auf Modellsysteme angewendet, um die
verschiedenen Elektronentransfer-Mechanismen besser zu verstehen. Dann
wird die Dynamik von konkreten intramolekularen Transferreaktionen
in realen Molekuelen berechnet und die Ergebnisse mit denen
von Experimenten und anderer Theorien verglichen.
|
2 |
Numerical studies of electron transfer in systems with dissipationKondov, Ivan Stelyianov 04 February 2003 (has links) (PDF)
Diese Dissertation befasst sich mit Modellrechnungen zur Dynamik vom photoinduzierten Elektrontransfer und Exzitontransfer in Systemen mit vielen Freiheitsgraden. Außerdem trägt diese Arbeit zu einigen theoretischen und numerischen Aspekten der Redfield-Theorie bei. Betrachtet werden der ultraschnelle Elektrontransfer im Farbstoff Betain-30, die Elektroninjektion von einem Chromophormolekül ins Leitungsband von einem Halbleiter, sowie die Exziton-Ausbreitung in einem modellhaften ringförmigen System mit 18 Lokalisierungszentren.
Zuerst wird der Einfluss der elektronischen Kopplung auf die Dissipationsterme der Redfield-Gleichung untersucht. Es wird gezeigt, dass bei bestimmten Potenzialkonfigurationen die Vernachlässigung der elektronischen Kopplung (die soganannte diabatische Dämpfungsnäherung) dazu führt, dass das System nicht in das thermische Gleichgewicht mit dem Wärmebad relaxiert. Jedoch verliert diese Näherung ihre Gültigkeit nicht für kleine elektronische Kopplung in einer ganzen Reihe von Fällen, z.B. im Marcus-invertierten Bereich. Die Transfermechanismen, welche jenseits dieser Näherung auftreten, werden mit Hilfe der Störungstheorie erster Ordnung in der elektronischen Kopplung detailliert untersucht. Weiterhin werden direkte Verfahren zur genauen numerischen Lösung zeitlokaler Mastergleichungen implementiert und getestet. Die Effizienz dieser Methoden wird am Beispiel von einem eindimensionalen Elektrontransfer-Modell bestimmt. Desweiteren wird noch ein neues stochastisches Verfahren zur Propagation von Dichtematrizen entwickelt und in den Simulationen verwendet. Der ultraschnelle photoinduzierte Elektrontransfer in Betain-30 wird sowohl mit einer einzelnen Reaktionsmode als auch mit zwei Reaktionsmoden modelliert. Anhand der reduzierten Dichtematrix lässt sich die Gesamtpolarisation berechnen und somit ist es möglich, ein Pump-Probe-Experiment zu simulieren. Die Rechenergebnisse werden mit experimentellen Daten verglichen.
|
3 |
Mechanismen des Elektronentransfers in molekularen SystemenFuchs, Christofer 30 January 1997 (has links)
Elektronentransfer spielt eine wichtige Rolle in vielen Bereichen der
Physik und Chemie. Ausgehend von rein klassischen Beschreibungen wie dem
beruehmten Marcus-Modell bis hin
zu komplexen quantenmechanischen Ansaetzen unter Beruecksichtigung
vieler Reaktionskoordinaten wurden viele Modelle aufgestellt, um den
Elektronentransfer zu beschreiben und Transferraten zu berechnen.
Dass diese Modelle meist nur in einer begrenzten Anzahl von
¨Szenarien¨ erfolgreich sind liegt an der Fuelle von
Mechanismen, die den Elektronentransfer beeinflussen, je nachdem, welches
System mit seinen charakteristischen Zustandsenergien und
Kopplungselementen betrachtet wird, und welche aeusseren Bedingungen wie
Temperatur oder Loesungsmittel herrschen. Mechanismen wie ¨thermisch
aktiviertes Tunneln¨ beeinflussen beobachtbare Phaenomenen wie
¨Trapping¨.
In dieser Arbeit wird die Elektronentransferdynamik mit
Bewegungsgleichungen fuer eine reduzierte Dichtematrix beschrieben,
deren Herleitung ausgehend von der Liouville-von Neumann-Gleichung
ueber die Nakayima-Zwanzig-Gleichung fuehrt.
Durch Ankopplung an ein Waermebad werden dissipative Effekte integriert.
Zunaechst wird diese Theorie auf Modellsysteme angewendet, um die
verschiedenen Elektronentransfer-Mechanismen besser zu verstehen. Dann
wird die Dynamik von konkreten intramolekularen Transferreaktionen
in realen Molekuelen berechnet und die Ergebnisse mit denen
von Experimenten und anderer Theorien verglichen.
|
4 |
Numerical studies of electron transfer in systems with dissipationKondov, Ivan Stelyianov 31 January 2003 (has links)
Diese Dissertation befasst sich mit Modellrechnungen zur Dynamik vom photoinduzierten Elektrontransfer und Exzitontransfer in Systemen mit vielen Freiheitsgraden. Außerdem trägt diese Arbeit zu einigen theoretischen und numerischen Aspekten der Redfield-Theorie bei. Betrachtet werden der ultraschnelle Elektrontransfer im Farbstoff Betain-30, die Elektroninjektion von einem Chromophormolekül ins Leitungsband von einem Halbleiter, sowie die Exziton-Ausbreitung in einem modellhaften ringförmigen System mit 18 Lokalisierungszentren.
Zuerst wird der Einfluss der elektronischen Kopplung auf die Dissipationsterme der Redfield-Gleichung untersucht. Es wird gezeigt, dass bei bestimmten Potenzialkonfigurationen die Vernachlässigung der elektronischen Kopplung (die soganannte diabatische Dämpfungsnäherung) dazu führt, dass das System nicht in das thermische Gleichgewicht mit dem Wärmebad relaxiert. Jedoch verliert diese Näherung ihre Gültigkeit nicht für kleine elektronische Kopplung in einer ganzen Reihe von Fällen, z.B. im Marcus-invertierten Bereich. Die Transfermechanismen, welche jenseits dieser Näherung auftreten, werden mit Hilfe der Störungstheorie erster Ordnung in der elektronischen Kopplung detailliert untersucht. Weiterhin werden direkte Verfahren zur genauen numerischen Lösung zeitlokaler Mastergleichungen implementiert und getestet. Die Effizienz dieser Methoden wird am Beispiel von einem eindimensionalen Elektrontransfer-Modell bestimmt. Desweiteren wird noch ein neues stochastisches Verfahren zur Propagation von Dichtematrizen entwickelt und in den Simulationen verwendet. Der ultraschnelle photoinduzierte Elektrontransfer in Betain-30 wird sowohl mit einer einzelnen Reaktionsmode als auch mit zwei Reaktionsmoden modelliert. Anhand der reduzierten Dichtematrix lässt sich die Gesamtpolarisation berechnen und somit ist es möglich, ein Pump-Probe-Experiment zu simulieren. Die Rechenergebnisse werden mit experimentellen Daten verglichen.
|
Page generated in 0.0382 seconds