• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sélection d'items en classification non supervisée et questionnaires informatisés adaptatifs : applications à des données de qualité de vie liée à la santé / Item selection in clustering and computerized adaptive tests : applications to health-related quality of life data

Michel, Pierre 13 December 2016 (has links)
Un questionnaire adaptatif fournit une mesure valide de la qualité de vie des patients et réduit le nombre d'items à remplir. Cette approche est dépendante des modèles utilisés, basés sur des hypothèses parfois non vérifiables. Nous proposons une approche alternative basée sur les arbres de décision. Cette approche n'est basée sur aucune hypothèse et requiert moins de temps de calcul pour l'administration des items. Nous présentons différentes simulations qui démontrent la pertinence de notre approche. Nous présentons une méthode de classification non supervisée appelée CUBT. CUBT comprend trois étapes pour obtenir une partition optimale d'un jeu de données. La première étape construit un arbre en divisant récursivement le jeu de données. La deuxième étape regroupe les paires de noeuds terminaux de l'arbre. La troisième étape agrège des nœuds terminaux qui ne sont pas issus de la même division. Différentes simulations sont présentés pour comparer CUBT avec d'autres approches. Nous définissons également des heuristiques concernant le choix des paramètres de CUBT. CUBT identifie les variables qui sont actives dans la construction de l'arbre. Cependant, bien que certaines variables peuvent être sans importance, elles peuvent être compétitives pour les variables actives. Il est essentiel de classer les variables en fonction d'un score d'importance pour déterminer leur pertinence dans un modèle donné. Nous présentons une méthode pour mesurer l'importance des variables basée sur CUBT et les divisions binaires compétitives pour définir un score d'importance des variables. Nous analysons l'efficacité et la stabilité de ce nouvel indice, en le comparant à d'autres méthodes. / An adaptive test provides a valid measure of quality of life of patients and reduces the number of items to be filled. This approach is dependent on the models used, sometimes based on unverifiable assumptions. We propose an alternative approach based on decision trees. This approach is not based on any assumptions and requires less calculation time for item administration. We present different simulations that demonstrate the relevance of our approach.We present an unsupervised classification method called CUBT. CUBT includes three steps to obtain an optimal partition of a data set. The first step grows a tree by recursively dividing the data set. The second step groups together the pairs of terminal nodes of the tree. The third step aggregates terminal nodes that do not come from the same split. Different simulations are presented to compare CUBT with other approaches. We also define heuristics for the choice of CUBT parameters.CUBT identifies the variables that are active in the construction of the tree. However, although some variables may be irrelevant, they may be competitive for the active variables. It is essential to rank the variables according to an importance score to determine their relevance in a given model. We present a method to measure the importance of variables based on CUBT and competitive binary splis to define a score of variable importance. We analyze the efficiency and stability of this new index, comparing it with other methods.
2

Stock picking via nonsymmetrically pruned binary decision trees with reject option

Andriyashin, Anton 06 July 2010 (has links)
Die Auswahl von Aktien ist ein Gebiet der Finanzanalyse, die von speziellem Interesse sowohl für viele professionelle Investoren als auch für Wissenschaftler ist. Empirische Untersuchungen belegen, dass Aktienerträge vorhergesagt werden können. Während verschiedene Modellierungstechniken zur Aktienselektion eingesetzt werden könnten, analysiert diese Arbeit die meist verbreiteten Methoden, darunter allgemeine Gleichgewichtsmodelle und Asset Pricing Modelle; parametrische, nichtparametrische und semiparametrische Regressionsmodelle; sowie beliebte Black-Box Klassifikationsmethoden. Aufgrund vorteilhafter Eigenschaften binärer Klassifikationsbäume, wie zum Beispiel einer herausragenden Interpretationsmöglichkeit von Entscheidungsregeln, wird der Kern des Handelsalgorithmus unter Verwendung dieser modernen, nichtparametrischen Methode konstruiert. Die optimale Größe des Baumes wird als der entscheidende Faktor für die Vorhersageperformance von Klassifikationsbäumen angesehen. Während eine Vielfalt alternativer populärer Bauminduktions- und Pruningtechniken existiert, die in dieser Studie kritisch gewürdigt werden, besteht eines der Hauptanliegen dieser Arbeit in einer neuartigen Methode asymmetrischen Baumprunings mit Abweisungsoption. Diese Methode wird als Best Node Selection (BNS) bezeichnet. Eine wichtige inverse Fortpflanzungseigenschaft der BNS wird bewiesen. Diese eröffnet eine einfache Möglichkeit, um die Suche der optimalen Baumgröße in der Praxis zu implementieren. Das traditionelle costcomplexity Pruning zeigt eine ähnliche Performance hinsichtlich der Baumgenauigkeit verglichen mit beliebten alternativen Techniken, und es stellt die Standard Pruningmethode für viele Anwendungen dar. Die BNS wird mit cost-complexity Pruning empirisch verglichen, indem zwei rekursive Portfolios aus DAX-Aktien zusammengestellt werden. Vorhersagen über die Performance für jede einzelne Aktie werden von Entscheidungsbäumen gemacht, die aktualisiert werden, sobald neue Marktinformationen erhältlich sind. Es wird gezeigt, dass die BNS der traditionellen Methode deutlich überlegen ist, und zwar sowohl gemäß den Backtesting Ergebnissen als auch nach dem Diebold-Marianto Test für statistische Signifikanz des Performanceunterschieds zwischen zwei Vorhersagemethoden. Ein weiteres neuartiges Charakteristikum dieser Arbeit liegt in der Verwendung individueller Entscheidungsregeln für jede einzelne Aktie im Unterschied zum traditionellen Zusammenfassen lernender Muster. Empirische Daten in Form individueller Entscheidungsregeln für einen zufällig ausgesuchten Zeitpunkt in der Überprüfungsreihe rechtfertigen diese Methode. / Stock picking is the field of financial analysis that is of particular interest for many professional investors and researchers. There is a lot of research evidence supporting the fact that stock returns can effectively be forecasted. While various modeling techniques could be employed for stock price prediction, a critical analysis of popular methods including general equilibrium and asset pricing models; parametric, non- and semiparametric regression models; and popular black box classification approaches is provided. Due to advantageous properties of binary classification trees including excellent level of interpretability of decision rules, the trading algorithm core is built employing this modern nonparametric method. Optimal tree size is believed to be the crucial factor of forecasting performance of classification trees. While there exists a set of widely adopted alternative tree induction and pruning techniques, which are critically examined in the study, one of the main contributions of this work is a novel methodology of nonsymmetrical tree pruning with reject option called Best Node Selection (BNS). An important inverse propagation property of BNS is proven that provides an easy way to implement the search for the optimal tree size in practice. Traditional cost-complexity pruning shows similar performance in terms of tree accuracy when assessed against popular alternative techniques, and it is the default pruning method for many applications. BNS is compared with costcomplexity pruning empirically by composing two recursive portfolios out of DAX30 stocks. Performance forecasts for each of the stocks are provided by constructed decision trees that are updated when new market information becomes available. It is shown that BNS clearly outperforms the traditional approach according to the backtesting results and the Diebold-Mariano test for statistical significance of the performance difference between two forecasting methods. Another novel feature of this work is the use of individual decision rules for each stock as opposed to pooling of learning samples, which is done traditionally. Empirical data in the form of provided individual decision rules for a randomly selected time point in the backtesting set justify this approach.

Page generated in 0.0931 seconds