• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • Tagged with
  • 27
  • 27
  • 23
  • 22
  • 12
  • 9
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Fabrication and Characterization of Ni-Mn-Ga Thin Films from Binder Jetting Additive Manufactured Sputtering Target

Bansah, Christopher Yaw 05 May 2022 (has links)
No description available.
12

INTEGRATED DESIGN OF BINDER JET PRINT PRODUCED HYDRAULIC AUTOMATIC VALVE SYSTEM

Heming Liu (14380014) 18 January 2023 (has links)
<p>Binder jet printing (BJP) is an additive manufacturing (AM) method which has the potential to be applied to high annual volumes in the automotive industry. Binder jet printing provides an excellent opportunity to innovate transmission valve body components. The three-layer design and complex hydraulic control system channels of valve body housing formulated a new electro-hydraulic system with the brand-new features inherited from BJP. For the valve body, the features of BJP brought a revolutionary new idea for both the valves and hydraulic channel design. The spool valve was housed with a sleeve that integrates orifices and port controls. The hydraulic channel layout of the valve body assembly was greatly simplified and space-saving. The support components had also been replaced with a lightweight design while maintaining the same functionality. Integrated design of Binder jet print produced hydraulic automatic valve system presented an entirely new design, whose static performance was compared to that of the conventional 948TE ZF9HP48 transmission valve body. Similar performance indicated that a valve body design featuring BJP would have great potential for various industrial applications.</p>
13

Process Optimization and Characterization of Inconel 718 Manufactured by Metal Binder Jetting

Eriksson, Tobias January 2021 (has links)
The development of a process chain for Inconel 718 production utilizing Binder Jetting has been investigated. Different powder sources were compared by the effect they had on machine compatibility, powder bed packing, recyclability, green density, sintering parameters, final density, porosity, and mechanical properties. The three powder lots investigated originated from two different production sites. One of the three powder lots has a finer powder size distribution, due it being produced simultaneously with another powder lot with a coarser powder size distribution fraction. This synergy production results in a higher yield of the atomization process and thus is economically and environmentally beneficial. The compatibility between powder lots and Binder Jetting machine was investigated using new powder and recycled powder. By using recycled powder in the process an increase in green density by 5% could be achieved. Several temperature and hold time relations were tested to develop a sintering program with an acceptable final density above 94% of theoretical density. 1270◦C with a hold time of 4h generated the best results. Sintered samples did not reach acceptable strength properties. The elongation value was twice as high as required for one of the powder lots using recycled powder. Post heat treatment generated samples with an acceptable yield strength but highly reduced elongation properties.
14

Structure-Property Relationship of Binder Jetted Fused Silica Preforms to Manufacture Ceramic-Metallic Interpenetrating Phase Composites

Myers, Kyle M. 24 May 2016 (has links)
No description available.
15

Automatization of de-powdering process for binder jetting technology

Borg, Mikael January 2022 (has links)
Additive manufacturing has gained considerable attention in recent years due to its capabilities of producing complex parts with tailormade mechanical properties. Because of its infancy state, additive manufacturing production chains are seldom optimized to the same extent as conventional manufacturing techniques. Companies with additive manufacturing production sitesusing powder as a building material often find themselves devoting a lot of resources towards depowdering, a post processing step that has potential of being a significant bottleneck.The purpose of this master thesis was to develop a de-powdering system that would function automatically, relieving operators from performing the process step manually. The following work has been conducted at Sandvik in Sandviken at the department for additive manufacturing.Results were acquired with high credibility due to a mixture of qualitative and quantitative gathering techniques that supplemented each other. Together with a literature review, empirical data gave rise to the possibility of developing a new de-powdering system for binder jetting technology.Optimization of the system indicated that larger inlets produced a higher removal efficiency. This was later confirmed with computational fluid dynamics, where smaller nozzles created a more turbulent air flow, making it difficult for powder particles to exit the system. Though final trials with green bodies revealed that the system, in its current state, did not have the capabilities of replacing manual de-powdering completely, it certainly displayed how efficient it can be with further development.
16

Structure-property-processing relationships between polymeric solutions and additive manufacturing for biomedical applications

Wilts, Emily Marie 01 October 2020 (has links)
Additive manufacturing (AM) creates 3D objects out of polymers, ceramics, and metals to enable cost-efficient and rapid production of products from aerospace to biomedical applications. Personalized products manufactured using AM, such as personalized dosage pharmaceuticals, tissue scaffolds, and medical devices, require specific material properties such as biocompatibility and biodegradability, etc. Polymers possess many of these qualities and tuning molecular structure enables a functional material to successfully deliver the intended application. For example, water-soluble polymers such as poly(vinyl pyrrolidone) and poly(ethylene glycol) both function as drug delivery materials because of their inherit water-solubility and biocompatibility. Other polymers such as polylactide and polyglycolide possess hydrolytically cleavable functionalities, which enables degradation in the body. Non-covalent bonds, such as hydrogen bonding and electrostatic interactions, enable strong connections capable of holding materials together, but disconnect with heat or solvation. Taking into consideration some of these polymer functionalities, this dissertation investigates how to utilize them to create functional biomedical products using AM. The investigation of structure-property-processing relationships of polymer molecular structures, physical properties, and processing behaviors is transforming the field of new materials for AM. Even though novel, functional materials for AM continue to be developed, requirements that render a polymeric material printable remain unknown or vague for most AM processes. Materials and printers are usually developed separately, which creates a disconnect between the material printing requirements and fundamental physical properties that enable successful printing. Through the interface of chemistry, biology, chemical engineering, and mechanical engineering, this dissertation aims to relate printability of polymeric materials with three types of AM processes, namely vat photopolymerization, binder jetting, and powder bed fusion. Binder jetting, vat photopolymerization, and powder bed fusion require different viscosity and powder requirements depending on the printer capabilities, and if the material is neat or in solution. Developing scaling relationships between solution viscosity and concentration determined critical overlap (C*) and entanglement (Ce) concentrations, which are related to the printability of the materials. For example, this dissertation discusses and investigates the maximum printable concentration in binder jetting of multiple polymer architectures in solution as a function of C* values of the polymer. For thermal-type printheads, C* appeared to be the highest jettable concentration, which asserted an additional method of material screening for binder jetting. Another investigation of the photokinetics as a function of concentration of photo-active polymers in solution revealed increased viscosity leads to decreased acrylate/acrylamide conversion. Lastly, investigating particle size and shape of poly(stearyl acrylate) particles synthesized through suspension polymerization revealed a combination of crosslinked and linear polymers produced high resolution parts for phase change materials. These analytical screening methods will help the progression of AM and provide future scientists and engineers a better guideline for material screenings. / Doctor of Philosophy / Additive manufacturing (AM), also known as 3D printing, enables the creation of 3D objects in a rapid and cost-efficient manner for applications from aerospace to biomedical sectors. AM particularly benefits the field of personalized biomedical products, such as personalized dosage pharmaceuticals, hearing aids, and prosthetic limbs. In the future, advanced detection and prevention medical screenings will provide doctors, pharmacists, and engineers very precise data to enable personalized healthcare. For example, a patient can take three different medications in one pill with the exact dosage to prevent side-effects and drug-drug interactions. AM enables the delivery and manufacturing of these personalized systems and will improve healthcare in every sector. Investigations of the most effective materials is needed for personalized medicine to become a reality. Polymers, or macromolecules, provide a highly tunable material to become printable with slight chemical modifications. Investigation of how chemical structure affects properties, such as strength, stretchability, or viscosity, will dictate how they perform in a manufacturing setting. This process of investigation is called "structure-property-processing" relationships, which connects scientists and engineers through all disciplines. This method is used to discover which polymers will not only 3D print, but also carry medication to a patient or deliver therapeutics within the body.
17

Experimental Evaluation of an Additively Manufactured Straight Mini-Channel Heat Sink for Electronics Cooling

Eidi, Ali Fadhil 23 March 2021 (has links)
The continuous miniaturization of electronic devices and the corresponding increase in computing powers have led to a significant growth in the density of heat dissipation within these devices. This increase in heat generation has challenged conventional air fan cooling and alternative solutions for heat removal are required to avoid overheating and part damage. Micro/Mini channel heat sinks (M/MCHS) that use liquids for heat removal appear as an attractive solution to this problem as they provide large heat transfer area per volume. Mini/microchannels traditionally have suffered from geometrical and material restrictions due to fabrication constraints. An emerging new additive manufacturing technique called binder jetting has the potential to overcome some of those restrictions. In this study, a straight minichannel heat sink is manufactured from stainless steel using binder jetting, and it is experimentally evaluated. The hydraulic performance of the heat sink is tested over a range of Reynolds numbers (150-1200). The comparison between the hydraulic results and standard correlations confirms that the targeted geometry was produced, although the high surface roughness created an early transition from laminar-to-turbulent flow. The heat transfer performance was also experimentally characterized at different heat flux conditions ($3000W/m^2$, $5000W/m^2$, $6500W/m^2$), and a range of Reynolds numbers (150-800). These results indicated that convection heat transfer coefficients on the order of $1000 W/m^2-K$ can be obtained with a simple heat sink design. Finally, the effects of the contact resistance on the results are studied, and contact resistance is shown to have critical importance on the thermal measurements. / Master of Science / The continuous miniaturization of electronic devices and the corresponding increase in computing powers have led to a significant growth in the density of heat dissipation within these devices. This increase in heat generation has challenged conventional air fan cooling and alternative solutions for heat removal are required to avoid overheating and part damage. Micro/Mini channel heat sinks (M/MCHS) that use water instead of air for heat removal appear as an attractive solution to this problem as they provide large heat transfer area per volume due to the small channels. Mini/microchannels are distinguished from conventional channels by the hydraulic diameter, where they range from $10mu m$ to $2mm$. M/MCHS are typically manufactured from a highly conductive metals with the channels fabricated on the surface. However, mini/microchannels traditionally have suffered from geometrical and material restrictions due to fabrication constraints. Complex features like curves or internall channels are difficult or even impossible to manufacture. An emerging new additive manufacturing technique called binder jetting has the potential to overcome some of those restrictions. Binder jetting possess unique advantageous as it uses precise control of a liquid binder applied to a bed of fine powder to create complex geometries Furthermore, it does not require extreme heating during the fabrication process. The advantages of binder jetting include that it is low cost, high speed, can be applied to a variety of materials, and the ability to scale easily in size. In this study, a straight minichannel heat sink is manufactured from stainless steel using binder jetting, and this heat sink is experimentally evaluated. The hydraulic performance of the heat sink is tested over different water flow rates (Reynolds numbers between 150-1200). The comparison between the hydraulic results and standard correlations confirms that the targeted geometry was produced, although the high surface roughness created an early transition from laminar-to-turbulent flow. The surface roughness effect should be considered in future designs of additively manufactured minichannels. The heat transfer performance was also experimentally characterized at different heat flux conditions ($3000W/m^2$, $5000W/m^2$, $6500W/m^2$), and different water flow conditions (Reynolds numbers 150-800). These results indicated that convection heat transfer coefficients on the order of $1000 W/m^2-K$ can be obtained with a simple heat sink design. However, a mismatch between the experimental data and the correlation requires further investigation. Finally, the effects of the contact resistance on the results are studied, and contact resistance is shown to have critical importance on the thermal measurements.
18

A Process for Manufacturing Metal-Ceramic Cellular Materials with Designed Mesostructure

Snelling, Dean Andrew Jr. 09 March 2015 (has links)
The goal of this work is to develop and characterize a manufacturing process that is able to create metal matrix composites with complex cellular geometries. The novel manufacturing method uses two distinct additive manufacturing processes: i) fabrication of patternless molds for cellular metal castings and ii) printing an advanced cellular ceramic for embedding in a metal matrix. However, while the use of AM greatly improves the freedom in the design of MMCs, it is important to identify the constraints imposed by the process and its process relationships. First, the author investigates potential differences in material properties (microstructure, porosity, mechanical strength) of A356 — T6 castings resulting from two different commercially available Binder Jetting media and traditional 'no-bake' silica sand. It was determined that they yielded statistically equivalent results in four of the seven tests performed: dendrite arm spacing, porosity, surface roughness, and tensile strength. They differed in sand tensile strength, hardness, and density. Additionally, two critical sources of process constraints on part geometry are examined: (i) depowdering unbound material from intricate casting channels and (ii) metal flow and solidification distances through complex mold geometries. A Taguchi Design of Experiments is used to determine the relationships of important independent variables of each constraint. For depowdering, a minimum cleaning diameter of 3 mm was determined along with an equation relating cleaning distance as a function of channel diameter. Furthermore, for metal flow, choke diameter was found to be significantly significant variable. Finally, the author presents methods to process complex ceramic structure from precursor powders via Binder Jetting AM technology to incorporate into a bonded sand mold and the subsequently casted metal matrix. Through sintering experiments, a sintering temperature of 1375 °C was established for the ceramic insert (78% cordierite). Upon printing and sintering the ceramic, three point bend tests showed the MMCs had less strength than the matrix material likely due to the relatively high porosity developed in the body. Additionally, it was found that the ceramic metal interface had minimal mechanical interlocking and chemical bonding limiting the strength of the final MMCs. / Ph. D.
19

Design, Fabrication and Testing of Fiber-Reinforced Cellular Structures with Tensegrity Behavior using 3D Printed Sand Molds

Jorapur, Nikhil Sudhindrarao 15 February 2017 (has links)
The overall goal of this work is to improve the structural performance of cellular structures in bending applications by incorporating tensegrity behavior using long continuous fibers. The designs are inspired by the hierarchical cellular structure composition present in pomelo fruit and the structural behavior of tensegrity structures. A design method for analyzing and predicting the behavior of the structures is presented. A novel manufacturing method is developed to produce the cellular structures with tensegrity behavior through the combination additive manufacturing and metal casting techniques. Tensegrity structures provide high stiffness to mass ratio with all the comprising elements experiencing either tension or compression. This research investigates the possibility of integrating tensegrity behavior with cellular structure mechanics and provides a design procedure in this process. The placement of fibers in an octet cellular structure was determined such that tensegrity behavior was achieved. Furthermore, using finite element analysis the bending performance was evaluated and the influence of fibers was measured using the models. The overall decrease in bending stress was 66.6 %. Extending this analysis, a design strategy was established to help designers in selecting fiber diameter based on the dimensions and material properties such that the deflection of the overall structure can be controlled. This research looks to Additive Manufacturing (AM) as a means to introduce tensegrity behavior in cellular structures. By combining Binder Jetting and metal casting a controlled reliable process is shown to produce aluminum octet-cellular structures with embedded fibers. 3D-printed sand molds embedded with long continuous fibers were used for metal casting. The fabricated structures were then subjected to 4 point bending tests to evaluate the effects of tensegrity behavior on the cellular mechanics. Through this fabrication and testing process, this work addresses the gap of evaluating the performance of tensegrity behavior. The overall strength increase by 30%. The simulation and experimental results were then compared to show the predictability of this process with errors of 2% for octet structures without fibers and 6% for octet structures with fibers. / Master of Science
20

Independent Project in Chemical Engineering and Materials Engineering : A literature study of powder-based additive manufacturing

Feldt, Daniel, Hedberg, Petra, Jarlöv, Asker, Persson, Elsa, Svensson, Mikael, Vennberg, Filippa, You, Therese January 2018 (has links)
The focus of this literary study was additive manufacturing (AM) and the purpose was to find general trends for selected materials that have been additively manufactured and compare them to results from other reviews. The raw materials studied were stainless steels 316L, 17-4 PH, 15-5 PH and 420, as well as tool steel H13 and nickel alloys 625, 718 and Hastelloy X.The AM techniques studied were selective laser melting (SLM), electron beam melting (EBM) and binder jetting (BJG).  A total of 69 articles have been studied to fulfill the purpose above. The articles were used to write a summary of the techniques, compare them to each other and to conventional methods. They were also used to create a database to compile information on mechanical properties, microstructure and process parameters. Based on the database mechanical properties for SLM tend to be higher compared to EBM. This however varied somewhat depending on the processed material. Furthermore the yield and tensile strength obtained from the database for SLM seemed to be higher compared to the values in review articles for almost all materials. Unfortunately not enough values were found for BJG to compare it to SLM and EBM.AM seems to produce weaker, equal and superior products compared to conventional methods. However due to the limited nature of the project and the research found no conclusions can be drawn about any trends, how to achieve the different results or how parameters affect the finished product. To be able to say anything with more certainty more research has to be done. Not only in general concerning the AM techniques, but more studying of existing articles is needed. Finally a standardization on how to reference properties and process parameters is necessary. Currently it is very difficult to compare results or draw conclusions due to different designations, units and a lot of missing essential information.

Page generated in 0.0565 seconds