• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data acquisition for modeling and visualization of vascular tree

Mondy, William Lafayette 01 June 2009 (has links)
Data can be acquired from tissue's vascular structure and used for modeling and visualization. To acquire data from a vascular tree, we make its structure available for the gathering of data by separating it from the structures of surrounding tissues, which includes the capillary structure. The capillary structure contains important information, but, because of its size, is the most difficult to acquire data from. In this work, we look at methods for contrasting the vascular structure from surrounding tissues, and focus on the use of corrosion casting for this procedure. We collected image data using micro-computer tomography (micro-CT) and converted data into stereolithography models. Models were imported into computer aided design (CAD) software, which was used to further process the models in order to ensure that the necessary structures were in place for the recreation of the capillary structures' relationship to targeted cell systems. Recreating the cell system-capillary system relationship is the reason building this model is so important. It is this relationship that we seek to model so that, in the future, we can create designs that guide the fabrication of three-dimensional (3D) scaffolding, which mimic capillary patterns with supportive structure that serve as an extracellular matrix for 3D tissue engineering. This method had been designed to enhance a variety of therapeutic protocols including, but not limited to, organ and tissue repair, systemic disease mediation and cell/tissue transplantation therapy.
2

Colloidal Active Matter Mimics the Behavior of Biological Microorganisms—An Overview

Nsamela, Audrey, Garcia Zintzun, Aidee Itandehui, Montenegro-Johnson, Thomas D., Simmchen, Juliane 04 June 2024 (has links)
This article provides a review of the recent development of biomimicking behaviors in active colloids. While the behavior of biological microswimmers is undoubtedly influenced by physics, it is frequently guided and manipulated by active sensing processes. Understanding the respective influences of the surrounding environment can help to engineering the desired response also in artificial swimmers. More often than not, the achievement of biomimicking behavior requires the understanding of both biological and artificial microswimmers swimming mechanisms and the parameters inducing mechanosensory responses. The comparison of both classes of microswimmers provides with analogies in their dependence on fuels, interaction with boundaries and stimuli induced motion, or taxis.

Page generated in 0.0336 seconds