• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • 2
  • Tagged with
  • 28
  • 9
  • 9
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Oxidative metabolism and cytochrome P450 enzyme inhibition potential of creosote bush and flaxseed lignans

Billinsky, Jennifer Lynn 22 September 2009
The rising use of natural products creates an imperative need for an enhanced awareness of the safety of current and new products making their way into the marketplace. An important example is natural products containing lignans as the principal active component. Despite their structural similarity the lignan of creosote bush can cause hepato- and renal toxicity while the lignans of flaxseed have no reported serious toxicity. This dissertation aimed to investigate the oxidative metabolism of such lignans to determine whether reversible, competitive interactions and/or bioactivation may explain the differences in their apparent toxicity.<p> The first objective was to study the metabolism and bioactivation of nordihydroguaiaretic acid (creosote bush) and secoisolariciresinol (flaxseed). Nordihydroguaiaretic acid metabolism in rat liver microsomes led to the production of three glutathione adducts formed via ortho¬-quinone reactive intermediates. This metabolism was independent of NADPH and thus attributed to autoxidation. Secoisolariciresinol metabolism yielded lariciresinol and no glutathione adducts suggesting an absence of bioactivation to reactive quinone intermediates.<p> The second objective was to study the autoxidation of nordihydroguaiaretic acid. The major autoxidation product was a unique, stable schisandrin-like cyclolignan which was the result of nordihydroguaiaretic acid cyclization. The half-life of nordihydroguaiaretic acid in aqueous solution, pH 7.4, 37ºC is 3.14 hours suggesting the cyclolignan may be responsible for some of the biological effects of nordihydroguaiaretic acid.<p> The third objective was to study the inhibition of cytochrome P450 isoforms 1A2, 2B, 2C11 and 3A by lignans derived from creosote bush and flaxseed. None of the lignans caused irreversible inhibition. Both creosote bush and flaxseed lignans caused reversible inhibition of P450 enzyme activity that involved competitive or mixed-type inhibition, however the inhibition was present at nonphysiologically relevant concentrations. Activation of cytochrome P450 isoforms was also observed at low lignan concentrations. The results suggest that P450-mediated bioactivation or reversible inhibition cannot explain the differences in toxicity noted between the lignans of creosote bush and flaxseed.<p> This work suggests a minimal risk for drug-lignan interactions at P450 enzymes. Further studies are warranted to determine the presence and biological and toxicological role of the nordihydroguaiaretic acid cyclolignan in herbal preparations.
22

Oxidative metabolism and cytochrome P450 enzyme inhibition potential of creosote bush and flaxseed lignans

Billinsky, Jennifer Lynn 22 September 2009 (has links)
The rising use of natural products creates an imperative need for an enhanced awareness of the safety of current and new products making their way into the marketplace. An important example is natural products containing lignans as the principal active component. Despite their structural similarity the lignan of creosote bush can cause hepato- and renal toxicity while the lignans of flaxseed have no reported serious toxicity. This dissertation aimed to investigate the oxidative metabolism of such lignans to determine whether reversible, competitive interactions and/or bioactivation may explain the differences in their apparent toxicity.<p> The first objective was to study the metabolism and bioactivation of nordihydroguaiaretic acid (creosote bush) and secoisolariciresinol (flaxseed). Nordihydroguaiaretic acid metabolism in rat liver microsomes led to the production of three glutathione adducts formed via ortho¬-quinone reactive intermediates. This metabolism was independent of NADPH and thus attributed to autoxidation. Secoisolariciresinol metabolism yielded lariciresinol and no glutathione adducts suggesting an absence of bioactivation to reactive quinone intermediates.<p> The second objective was to study the autoxidation of nordihydroguaiaretic acid. The major autoxidation product was a unique, stable schisandrin-like cyclolignan which was the result of nordihydroguaiaretic acid cyclization. The half-life of nordihydroguaiaretic acid in aqueous solution, pH 7.4, 37ºC is 3.14 hours suggesting the cyclolignan may be responsible for some of the biological effects of nordihydroguaiaretic acid.<p> The third objective was to study the inhibition of cytochrome P450 isoforms 1A2, 2B, 2C11 and 3A by lignans derived from creosote bush and flaxseed. None of the lignans caused irreversible inhibition. Both creosote bush and flaxseed lignans caused reversible inhibition of P450 enzyme activity that involved competitive or mixed-type inhibition, however the inhibition was present at nonphysiologically relevant concentrations. Activation of cytochrome P450 isoforms was also observed at low lignan concentrations. The results suggest that P450-mediated bioactivation or reversible inhibition cannot explain the differences in toxicity noted between the lignans of creosote bush and flaxseed.<p> This work suggests a minimal risk for drug-lignan interactions at P450 enzymes. Further studies are warranted to determine the presence and biological and toxicological role of the nordihydroguaiaretic acid cyclolignan in herbal preparations.
23

Synthesis of nordihydroguaiaretic acid (NDGA) analogues and their oxidative metabolism

2015 June 1900 (has links)
Nordihydroguaiaretic acid (NDGA), is a naturally-occurring lignan isolated from the creosote bush (Larrea tridentata). The aqueous extract of this shrub, commonly referred to as Chaparral tea, was listed in the American pharmacopeia as an ethnobotanical used to treat tuberculosis, arthritis and cancer. Other documented traditional applications of creosote bush extract include treatment for infertility, rheumatism, arthritis, diabetes, gallbladder and kidney stones, pain and inflammation among many others. In spite of the numerous pharmacological properties, NDGA use has been associated with toxicities including hepatotoxicity in humans. Previous studies in our group showed that oxidative cyclization of NDGA (a di-catechol) at physiological pH forms a dibenzocyclooctadiene that may have therapeutic benefits whilst oxidation to ortho-quinone likely mediates toxicological properties. In order to investigate the structural features responsible for pharmacological and toxicological properties, a series of NDGA analogues were designed, synthesized and characterized for the purpose of studying their oxidative metabolism. Literature procedures were modified to successfully prepare seven lignan analogues via multi-step synthesis. In our effort to understand the mechanisms of NDGA intramolecular cyclization, the prepared analogues were incubated under previously established conditions where NDGA autoxidized to yield the dibenzocyclooctadiene derivative. We also evaluated the stability of the analogues under the conditions of this study. Furthermore, we evaluated bioactivation potential of the prepared analogues with a goal of eliminating reactive metabolite liability through rational structural modification. We incubated NDGA and its analogues in rat liver microsomes (RLM) in the presence of glutathione as a nucleophilic trapping agent. Standards for comparison were generated by performing glutathione trapping experiments with chemical and enzyme oxidation systems. The potential of the dibenzocyclooctadiene lignan 2 derived from NDGA under physiological conditions to contribute to toxicological properties via reactive metabolite formation was also evaluated. Glutathione conjugates were detected by electrospray ionization-mass spectrometry (ESI-MS) scanning for neutral loss (NL) 129 Da or 307 Da in positive ion mode or precursor ion (PI) scanning for 272 Da in negative ion mode and further characterized by liquid chromatography–tandem mass spectrometry (LC–MS/MS) or in a single LC-MS run using multiple reactions monitoring (MRM) as a survey scan to trigger acquisition of enhanced product ion (EPI) data. We determined that NDGA autoxidation at pH 7.4 is dependent on substituents and/or substitution pattern on the two aromatic rings. In particular, spontaneous intramolecular cyclization to a dibenzocyclooctadiene required a di-catechol lignan, raising the possibility that o-Q formation may not be necessary for cyclization to occur. Cyclization was significantly inhibited in the presence of excess GSH which supports the involvement of free radicals as opposed to o-Q in the intramolecular cyclization process. The mono-catechol analogues A1 and A4 underwent oxidation to o-Q but no evidence of cyclization was found implying that electrophilic substitution cannot account for NDGA cyclization. The phenol-type analogues were oxidatively more stable in comparison with the catechol-type analogues at pH 7.4. The results demonstrate that electrophilic substitution makes no contribution to the intramolecular cyclization process and that a radical mediated process accurately describes the situation for NDGA. Oxidative metabolism and bioactivation studies on NDGA and its analogues revealed that reactive metabolites formation is dependent on substitution and/or substitution pattern of the aromatic rings. Cytochrome P450-mediated oxidation of NDGA and its catechol-type analogues yielded electrophilic intermediates which reacted with GSH. The GSH mono-conjugates were identified as ring adducts derived from o-Q although the position at which the GSH binds to the aromatic rings could not be determined. We also found that NL 129 or 307 scanning in positive ionization mode has potential diagnostic utility in distinguishing between aromatic and benzylic GSH conjugates although further studies may be required for validation. We found no evidence of p-QM either directly or via isomerization of o-Q intermediates suggesting that o-Q is the major reactive toxicophore responsible for reactive metabolite mediated toxicities associated with NDGA use. In addition, we demonstrated that the NDGA-derived dibenzycyclooctadiene lignan (cNDGA 2) undergoes P450-mediated oxidation to a reactive metabolite which might have toxicological implications. There was no evidence of P450-mediated oxidation to reactive metabolites for the phenol-type NDGA analogues. It is concluded that structural modification efforts should focus on phenol-type analogues to potentially enhance the safety profile of NDGA.
24

Selective Retention of β-Carbolines and 7,12-Dimethylbenz[<i>a</i>]anthracene in the Brain : Role of Neuromelanin and Cytochrome P450 for Toxicity

Östergren, Anna January 2005 (has links)
<p>The ß-carbolines norharman and harman structurally resemble the synthetic compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) that is known for its ability to damage neuromelanin-containing dopaminergic neurons of the substantia nigra and thereby induce parkinsonism. MPTP is, however, not normally present in the environment whereas the ß-carbolines are present in cooked food and tobacco smoke. </p><p>In this thesis it was demonstrated that norharman and harman had affinity to melanin and were retained in neuromelanin-containing neurons of frogs up to 30 days post-injection (the longest survival time examined). It was also demonstrated that norharman induced neurodegeneration, activation of glia cells and motor impairment in mice. Furthermore, this compound induced ER stress and cell death in PC12 cells. An in vitro model of dopamine melanin-loaded PC12 cells was developed in order to study the effect of melanin on norharman-induced toxicity. In this model, melanin seemed to attenuate toxicity induced by low concentrations of norharman. After exposure to the highest concentration of norharman, melanin clusters were disaggregated and there was an increased expression of stress proteins and caspases-3, known to be involved in apoptosis.</p><p>The polycyclic aromatic hydrocarbon, 7,12-dimethylbenz[<i>a</i>]anthracene was demonstrated to have a CYP1A1-dependent localization in endothelial cells in the choroid plexus, in the veins in the leptomeninges and in the cerebral veins of mice pre-treated with CYP1-inducers. </p><p>These results demonstrate that the distribution of environmental compounds could be influenced by the presence of neuromelanin and expression of CYP enzymes in the brain and that norharman may induce neurotoxic effects in vivo and in vitro.</p>
25

Selective Retention of β-Carbolines and 7,12-Dimethylbenz[a]anthracene in the Brain : Role of Neuromelanin and Cytochrome P450 for Toxicity

Östergren, Anna January 2005 (has links)
The ß-carbolines norharman and harman structurally resemble the synthetic compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) that is known for its ability to damage neuromelanin-containing dopaminergic neurons of the substantia nigra and thereby induce parkinsonism. MPTP is, however, not normally present in the environment whereas the ß-carbolines are present in cooked food and tobacco smoke. In this thesis it was demonstrated that norharman and harman had affinity to melanin and were retained in neuromelanin-containing neurons of frogs up to 30 days post-injection (the longest survival time examined). It was also demonstrated that norharman induced neurodegeneration, activation of glia cells and motor impairment in mice. Furthermore, this compound induced ER stress and cell death in PC12 cells. An in vitro model of dopamine melanin-loaded PC12 cells was developed in order to study the effect of melanin on norharman-induced toxicity. In this model, melanin seemed to attenuate toxicity induced by low concentrations of norharman. After exposure to the highest concentration of norharman, melanin clusters were disaggregated and there was an increased expression of stress proteins and caspases-3, known to be involved in apoptosis. The polycyclic aromatic hydrocarbon, 7,12-dimethylbenz[a]anthracene was demonstrated to have a CYP1A1-dependent localization in endothelial cells in the choroid plexus, in the veins in the leptomeninges and in the cerebral veins of mice pre-treated with CYP1-inducers. These results demonstrate that the distribution of environmental compounds could be influenced by the presence of neuromelanin and expression of CYP enzymes in the brain and that norharman may induce neurotoxic effects in vivo and in vitro.
26

Mutational Analysis and Redesign of Alpha-class Glutathione Transferases for Enhanced Azathioprine Activity

Modén, Olof January 2013 (has links)
Glutathione transferase (GST) A2-2 is the human enzyme most efficient in catalyzing azathioprine activation. Structure-function relationships were sought explaining the higher catalytic efficiency compared to other alpha class GSTs. By screening a DNA shuffling library, five recombined segments were identified that were conserved among the most active mutants. Mutational analysis confirmed the importance of these short segments as their insertion into low-active GSTs introduced higher azathioprine activity. Besides, H-site mutagenesis led to decreased azathioprine activity when the targeted positions belonged to these conserved segments and mainly enhanced activity when other positions were targeted. Hydrophobic residues were preferred in positions 208 and 213. The prodrug azathioprine is today primarily used for maintaining remission in inflammatory bowel disease. Therapy leads to adverse effects for 30 % of the patients and genotyping of the metabolic genes involved can explain some of these incidences. Five genotypes of human A2-2 were characterized and variant A2*E had 3–4-fold higher catalytic efficiency with azathioprine, due to a proline mutated close to the H-site. Faster activation might lead to different metabolite distributions and possibly more adverse effects. Genotyping of GSTs is recommended for further studies. Molecular docking of azathioprine into a modeled structure of A2*E suggested three positions for mutagenesis. The most active mutants had small or polar residues in the mutated positions. Mutant L107G/L108D/F222H displayed a 70-fold improved catalytic efficiency with azathioprine. Determination of its structure by X-ray crystallography showed a widened H-site, suggesting that the transition state could be accommodated in a mode better suited for catalysis. The mutational analysis increased our understanding of the azathioprine activation in alpha class GSTs and highlighted A2*E as one factor possibly behind the adverse drug-effects. A successfully redesigned GST, with 200-fold enhanced catalytic efficiency towards azathioprine compared to the starting point A2*C, might find use in targeted enzyme-prodrug therapies.
27

Molecular Mechanisms and Determinants of Species Sensitivity in Thalidomide Teratogenesis

Lee, Crystal J. J. 14 August 2013 (has links)
The expanding therapeutic use of thalidomide (TD) remains limited by its species-specific teratogenicity in humans and rabbits, but not rodents. The R and S isomers of TD may be selectively responsible for its respective therapeutic and teratogenic effects, but rapid in vivo racemization makes this impossible to confirm. Fluorothalidomide (FTD), a fluorinated TD analogue with stable, non-racemizing isomers, may serve as a model compound for determining stereoselective effects. In vivo, FTD was undetectable in plasma, suggesting rapid breakdown, as confirmed in vitro, where FTD hydrolyzed up to 22-fold faster than TD. Unlike TD, FTD in pregnant rabbits and mice was highly toxic and lethal to both dams and fetuses. In rabbit embryo culture, FTD initiated optic (eye) vesicle and hindbrain but not classic limb bud embryopathies. Chemical instability, potent general toxicity and absence of limb bud embryopathies make FTD an unsuitable stereoselective model for TD teratogenesis. TD teratogenesis may involve its bioactivation by embryonic prostaglandin H synthases (PHSs) to a free radical intermediate that increases embryopathic reactive oxygen species (ROS) formation. However, the teratogenic potential of rapidly formed TD hydrolysis products and the determinants of species-specific teratogenesis are unclear. For some teratogens, mouse strains that are resistant in vivo are susceptible in embryo culture, suggesting maternal and/or placental determinants of risk. However, TD and two hydrolysis products, 2-phthalimidoglutaramic acid (PGMA) and 2-phthalimidoglutaraic acid (PGA), were non-embryopathic in CD-1 mouse embryo culture. Also, mice deficient in oxoguanine glycosylase 1 (OGG1), which repairs oxidatively damaged DNA, were resistant to TD embryopathies in culture and in vivo. Therefore, murine resistance to TD teratogenesis is dependent on embryonic factors, rather than maternal/placental determinants or increased DNA repair. In contrast, rabbit embryos exposed in culture to TD, PGMA and PGA exhibited head/brain, otic (ear) vesicle and classic limb bud embryopathies, validating the first mammalian embryo culture model for TD teratogenesis and providing the first evidence of a teratogenic role for TD hydrolysis products. Pretreatment with eicosatetraynoic acid (ETYA), a dual PHS/lipoxygenase inhibitor, or phenylbutylnitrone (PBN), a free radical spin trapping agent, completely blocked TD, PGMA and PGA-initiated embryopathies, implicating a PHS-dependent, ROS-mediated embryopathic mechanism.
28

Molecular Mechanisms and Determinants of Species Sensitivity in Thalidomide Teratogenesis

Lee, Crystal J. J. 14 August 2013 (has links)
The expanding therapeutic use of thalidomide (TD) remains limited by its species-specific teratogenicity in humans and rabbits, but not rodents. The R and S isomers of TD may be selectively responsible for its respective therapeutic and teratogenic effects, but rapid in vivo racemization makes this impossible to confirm. Fluorothalidomide (FTD), a fluorinated TD analogue with stable, non-racemizing isomers, may serve as a model compound for determining stereoselective effects. In vivo, FTD was undetectable in plasma, suggesting rapid breakdown, as confirmed in vitro, where FTD hydrolyzed up to 22-fold faster than TD. Unlike TD, FTD in pregnant rabbits and mice was highly toxic and lethal to both dams and fetuses. In rabbit embryo culture, FTD initiated optic (eye) vesicle and hindbrain but not classic limb bud embryopathies. Chemical instability, potent general toxicity and absence of limb bud embryopathies make FTD an unsuitable stereoselective model for TD teratogenesis. TD teratogenesis may involve its bioactivation by embryonic prostaglandin H synthases (PHSs) to a free radical intermediate that increases embryopathic reactive oxygen species (ROS) formation. However, the teratogenic potential of rapidly formed TD hydrolysis products and the determinants of species-specific teratogenesis are unclear. For some teratogens, mouse strains that are resistant in vivo are susceptible in embryo culture, suggesting maternal and/or placental determinants of risk. However, TD and two hydrolysis products, 2-phthalimidoglutaramic acid (PGMA) and 2-phthalimidoglutaraic acid (PGA), were non-embryopathic in CD-1 mouse embryo culture. Also, mice deficient in oxoguanine glycosylase 1 (OGG1), which repairs oxidatively damaged DNA, were resistant to TD embryopathies in culture and in vivo. Therefore, murine resistance to TD teratogenesis is dependent on embryonic factors, rather than maternal/placental determinants or increased DNA repair. In contrast, rabbit embryos exposed in culture to TD, PGMA and PGA exhibited head/brain, otic (ear) vesicle and classic limb bud embryopathies, validating the first mammalian embryo culture model for TD teratogenesis and providing the first evidence of a teratogenic role for TD hydrolysis products. Pretreatment with eicosatetraynoic acid (ETYA), a dual PHS/lipoxygenase inhibitor, or phenylbutylnitrone (PBN), a free radical spin trapping agent, completely blocked TD, PGMA and PGA-initiated embryopathies, implicating a PHS-dependent, ROS-mediated embryopathic mechanism.

Page generated in 0.0916 seconds