Spelling suggestions: "subject:"biodegradation"" "subject:"diodegradation""
451 |
Reductive dechlorination of chlorinated phenols in methanogenic wetland sediment slurriesChiang, Sheau-Yun 05 1900 (has links)
No description available.
|
452 |
Cellulose liquefaction under mild conditionsSabade, Sanjiv B. (Sanjiv Balwant) January 1983 (has links)
No description available.
|
453 |
Molecular aspects of cellobiose dehydrogenase produced by Trametes versicolorDumonceaux, Timothy J. January 1998 (has links)
Under cellulolytic conditions, the white-rot fungus Trametes versicolor produces cellobiose dehydrogenase (CDH), an enzyme with a number of biochemical properties that are potentially relevant to the degradation of lignin and cellulose. To clarify its biochemical properties, CDH was purified from cultures of T. versicolor. Two isoforms of CDH were found: a 97 kDa isoform with both heme and flavin cofactors, and an 81 kDa isoform with a flavin cofactor. Both isoforms of CDH were found to be quite non-specific in their reductive half reactions. The flavin enzyme catalyzed many of the same reactions as the heme/flavin enzyme, but less efficiently. The flavin isoform reduced Fe(III) and Cu(II) only at concentrations well above those found physiologically. Thus the heme/flavin enzyme, but not the flavin enzyme, could be involved in promoting and sustaining the generation of hydroxyl radicals (·OH) by Fenton's chemistry. / To characterize further the structural features of CDH, a genomic clone was isolated and sequenced. CDH was found to consist of 748 amino acids, without its predicted 19 amino acid signal peptide. Consistent with the domain structure of other CDHs, T. versicolor CDH appeared to be divided into an amino terminal heme domain and a carboxy terminal flavin domain, connected by a hydroxyamino acid-rich linker. Within the flavin domain, a putative cellulose-binding domain (CBD) was found by alignment to the hypothesized CBD of P. chrysosporium CDH. The CBD of CDH appeared to be structurally unrelated to other CBDs which have been reported. / A cDNA clone encoding T. versicolor CDH was isolated by RT-PCR. Using this clone, three vectors for the heterologous expression in Aspergillus oryzae of CDH were prepared. These vectors were built by performing in-frame fusions of the cDNA to control sequences from the highly expressed A. oryzae amylase gene. These vectors were transformed into A. oryzae and one strain was isolated which contained the expression construct DNA. / A rapid method for cloning cdh-like genes was developed. Using short stretches of amino acids completely conserved within T. versicolor and P. chrysosporium CDH, PCR primers were designed to amplify a homologous gene from other fungi. The primers were tested using genomic DNA of Pycnoporus cinnabarinus. A 1.8-kb fragment of P. cinnabarinus cdh was thereby amplified and cloned, and its sequence was determined. The three CDHs displayed very high homology at the amino acid level. / Finally, to probe the role of CDH in lignocellulose degradation by T. versicolor, a "knockout" vector was constructed consisting of a phleomycin-resistance cassette inserted into the protein coding sequence of cloned T. versicolor cdh. T. versicolor was transformed with the knockout vector and the transformants were analyzed for their CDH-producing phenotype. Three isolates were found that produced no detectable CDH. Biobleaching and delignification by the CDH(-) strains appeared to be unaffected, suggesting that CDH does not play an important role in these processes.
|
454 |
The investigation of stream leaf litter decomposition and the associated anaerobic cellulolytic bacterial populationsPettibone, Gary W. January 1977 (has links)
The microbial Population of stream leaf litter was examined during the fall and winter of 1976 in Bell Creek, Delaware County, Indiana. Nylon-mesh bags containing leaves were placed in the creek and allowed to become colonized by bacteria and fungi. Of special interest was the enumeration and identification of cellulolytic anaerobic bacteria. This study revealed the presence of these bacteria in all sample cases. These bacteria were generally identified as belonging to the genus Clostridium. Two species of cellulolytic pseudomonads were also isolated. Non-cellulolytic bacteria belonging to the genera Flavobacterium and Beijerinckia were isolated. These aerobic organisms may function indirectly in cellulose degradation by removing toxic byproducts or growth limiting factors.
|
455 |
Phytoremediation of nitroglycerin in smokeless powdersAsbaghi, Navid 21 July 2012 (has links)
Access to abstract restricted until July 21, 2015. / Asscess to dissertation restricted until July 21, 2015 / Department of Natural Resources and Environmental Management
|
456 |
Phytoremediation systems for treatment of contaminant mixtures in soilDuxbury, Patrick H. January 2000 (has links)
Plant-based remediation techniques that can address mixtures of heavy metals and organic contaminants in soil warrant investigation due to their cost effectiveness and public acceptability. The potential of phytoremediation to remediate mixtures of heavy metals and hydrocarbons in soil is presented in two papers. A hydropic screening of twenty-seven forage grasses, grown in a solution containing 100 muM Zn, 5 muM Cu and 1 muM Cd, provided six species that were exceptionally metal tolerant. These six species were examined for their growth response and root phenolic secretion at five levels of hydroponic heavy metal contamination. Phenolic secretion, an indicator of a plant's capacity to promote polycyclic aromatic hydrocarbon (PAH) degradation, increased with heavy metal contamination, however, the values were low (<30 mug/g root). Two high biomass producing, metal-tolerant grasses, Bromus riparius and Arrhenatherum elatius, were combined with M2Rhizo4, a strain of plant growth-promoting rhizobacteria. The plant-bacterial combinations were established in artificial and genuine soils contaminated with heavy metals and PAHs at a range of concentrations. In contaminant-free artificial soil, inoculation promoted B. riparius growth by 25% compared to non-inoculated plants. In artificial soil, contaminated with 495 mg/kg Zn, 263 mg/kg Cu and 23 mg/kg Cd, M2Rhizo4 promoted B. riparius growth by 22%. In chromated-copper-arsenate (CCA) and creosote contaminated soil, M2Rhizo4 inoculated A. elatius had 15% more biomass and greater survival rates than non-inoculated A. elatius. A phytoremediation system composed of metal-tolerant plants inoculated with hydrocarbon-degrading or plant growth promoting bacteria may be suitable for sites contaminated with a mixtures of hydrocarbons and heavy metals.
|
457 |
Mitigating biofilm growth through the modification of concrete design and practiceKurth, Jonah C. 01 April 2008 (has links)
This project researched the fungal and bacterial communities (i.e. biofilms) found on concrete infrastructure in Georgia. Various microbial communities were sampled from four geographically separated sites. The species present in these biofilms were identified through DNA analysis and cultured for testing. A new, rapid test method was developed to accurately simulate field growth conditions in a laboratory environment. Using the newly developed test method, these communities were grown on small mortar tiles, which varied in w/cm, surface roughness, cement type (including photocatalytic cement), and supplementary cementing materials. This research determined that photocatalytic cement was the most effective in decreasing biofilm growth under artificial daylight, but did not increase or decrease growth when not exposed to light. The next most effective ways to decrease growth were lowering w/cm and decreasing surface roughness. The supplementary cementing materials examined did not increase or decrease biofilm growth.
|
458 |
Experimental and in silico evaluation of anthropogenic organic compounds and their biodegradation products as precursors of haloacetic acids / 人為由来化合物およびその生分解生成物のハロ酢酸前駆体としての実験的および計算化学的評価Cordero Solano, José Andrés 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23871号 / 工博第4958号 / 新制||工||1775(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 伊藤 禎彦, 教授 藤原 拓, 教授 越後 信哉 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
459 |
Influence of calcium on the decomposition of organic materials in soils / Jeffrey Alexander BaldockBaldock, Jeffrey Alexander January 1989 (has links)
Includes bibliographical references. / 1 v. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The mechanism(s) by which calcium stabilises soil organic carbon against microbial attack was investigated in this study. / Thesis (M.A.)--University of Adelaide, Dept. of Soil Science, 1989
|
460 |
The microbiology of railway tracks : towards a rational use of herbicides on Swedish railways /Cederlund, Harald, January 2006 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniversitet, 2006. / Härtill 4 uppsatser.
|
Page generated in 0.0713 seconds