• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 74
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 177
  • 177
  • 40
  • 27
  • 21
  • 21
  • 21
  • 21
  • 21
  • 18
  • 18
  • 17
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Effects of bio-diesel fuel blends on the performance and emissions of diesel engine

Unknown Date (has links)
This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce fuels without redesigning any of the engine technology present today, yet allowing for green house emissions to decrease. Bio-diesel is one of these types of emerging bio-fuels, which has an immediate alternative fuel aspect to it, while providing a decrease in green house emissions, as well as a solution to recycling used Waste Vegetable Oils which are other wise disposed. This study shows how by blending bio-diesel with petroleum diesel at intervals of B5, B10, B15, and B20 decrease green house emissions can significantly while maintaining similar performance output and efficiency with respect to 100% petroleum diesel. / by Sergio Bastiani. / Thesis (M.S.C.S.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
52

Identifying optimal locations for large scale Jatropha cultivation for biodiesel production in Tanzania's semi arid regions.

Mudede, Elmah Zvanyadza. January 2009 (has links)
Rapidly increasing concerns about energy security coupled with detrimental environmental impacts posed by the dependence on fossil fuels, and an urgent need for rural development in Africa are key drivers for the search for fuel alternatives. The international effort into the development of criteria and indicators for sustainable bioenergy production clearly recognizes that bioenergy production must not be at the expense of biodiversity and food security. Owing to its multi-purpose capabilities i.e. its ability to rehabilitate eroded lands, drought resistance as well as its biophysical and maintenance requirements, Jatropha was selected as a potential candidate for the production of biodiesel. Jatropha is not new to the people of Tanzania, the study area of the project. Research has shown that, its associated social, environmental and economic benefits are crucial to economic development of the country. At present, all of Tanzania’s petroleum based products are imported; about 90% of the energy consumed is derived from biomass; road, rail and electricity networks are underdeveloped. Environmental degradation is also a concern in the country. The aim of the study was to identify three optimal locations for large scale Jatropha cultivation for biodiesel production in Tanzania’s semi arid regions. Geographical Information Systems was used to overlay several remotely sensed data from previous research namely semi arid regions delineations, agro-ecological sub-zones that had Jatropha potential as well as the administrative zones of Tanzania. The unavailable and/unsuitable areas were verified against literature and this enabled the areas that were under cultivation, were housing biodiversity or were generally constrained to be filtered out from the study area. The three largest, available and potentially suitable areas that the study identified for large scale Jatropha cultivation occupied about 7.6 million hectares. Assuming an optimal seed yield and an oil content of 35%, these areas are capable of producing about 14.4 million litres of Jatropha oil per annum. Targeting a SADC fuel import substitution of 10%, these 14.4 million litres of Jatropha oil that the three areas will meet about 83% of the country’s energy needs. Owing to the state of electricity generation in Tanzania, these three areas are able to generate about six percent of electricity and this can contribute to some extend to the country energy needs. From the analysis it was clear to note that the production of biodiesel for blending or for electricity generation is going to be economically viable from the three selected regions. The available and suitable areas that were not consolidated within the three selected regions can be used for small scale Jatropha cultivation and their produce can be fed to large scale commercial oil production or they can use the biodiesel to produce their own electricity. Jatropha will have to be irrigated to enhance a viable economic yield; infrastructure will need to be constructed to areas that are not served by roads and railway lines. All of this bodes well for enhancing rural development. The government has already had the foresight to establish the National Biofuels Task Force which will need to monitor investors to ensure no enforced human displacement and/or exploitation in areas where the large scale farms are to be established. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2009.
53

The treatment of biodiesel wastewater using an integrated electrochemical and adsorption process

Myburgh, Dirk Petrus January 2018 (has links)
Thesis (Master of Engineering in Chemical Engineering)--Cape Peninsula University of Technology, 2018. / The production of biodiesel is an energy and water intensive process. The wastewater that is produced during this process is high in concentrations of COD, BOD, FOG and various other contaminants. Since it contains low levels of nutrients, it is difficult to degrade using natural processes such as conventional activated sludge wastewater treatment. The discharge of untreated biodiesel wastewater also raises serious environmental concern. It interferes when remediated with biological processes and results in additional costs during the production of biodiesel when penalties and fines are applied. Conventional treatment processes are not capable of treating contaminants and pollutants in biodiesel to satisfactory concentrations and hence advanced treatment processes are necessary. In this research, a lab scale integrated treatment process was used to investigate the successful reduction of contaminants, in particular COD, BOD and FOG. The integrated treatment process used in this study consisted of three consecutive steps; acidification, electrochemical oxidation and adsorption using chitosan as an adsorbent. The electrochemical oxidation process with IrO2-Ta2O5/Ti anodes was applied to treat biodiesel wastewater. Different operating conditions were tested to establish favourable conditions. The current density applied as well as the concentration of NaCl as the supporting electrolyte greatly affected the process. A NaCl concentration of 0.08M was deemed sufficient, whereas a current density of 1 mA/cm² showed superior performance compared to lower or higher current densities. Adsorption of pollutants in biodiesel wastewater was investigated using Chitosan as the adsorbent. Various chitosan concentrations, initial pH of the wastewater and repetitive adsorption stages were investigated. It was discovered that all three operating conditions greatly affect the performance of the process. The three consecutive adsorption stages using a chitosan concentration of 4.5 g/L at a pH of 2 resulted in the highest pollutant removal. It was observed that the integrated treatment process could reduce COD, BOD and FOG levels by 94%, 86% and 95% respectively. This concludes that the treated effluent complies with local industrial effluent discharge standards, which could be disposed safely without further treatment.
54

Screening for indigenous algae and optimisation of algal lipid yields for biodiesel production

Rawat, Ismail January 2011 (has links)
Submitted in fulfilment of the requirements of the Degree of Master of Technology: Biotechnology, Durban University of Technology, 2011. / The depletion of global energy supplies coupled with an ever increasing need for energy and the effects of global warming have warranted the search for alternate renewable sources of fuel such as biodiesel. First generation biofuels are not sustainable enough to meet long term global energy requirements and more recently there has been concern expressed as to the potential negative implication of crop based biofuels in the form of negative energy balances and potentially no greenhouse gas benefit due to land utilisation not being taken into account. Microalgae have shown great promise as a sustainable alternative to first generation biofuels. They have faster growth rates, have greater photosynthetic efficiencies, require minimal nutrients and are capable of growth in saline waters which are unsuitable for agriculture. Microalgae utilise a large fraction of solar energy and have the potential to produce 45 to 220 times higher amounts of triglycerides than terrestrial plants. The use of microalgae for biodiesel production requires strain selection, optimisation and viability testing to ascertain the most appropriate organism for large scale cultivation. This study focuses on bioprospecting for indigenous lipid producing microalgae, screening, selection and optimisation of growth and lipid yields with respect to nutrient limitation. Further we have ascertained the sustainability of a selected species of microalgae in open pond system. Chlorella sp. and Scenedesmus sp. were found to be dominant amongst the isolates. Strains we selected and underwent media selection and growth and lipid optimisation trials. BG11 media was selected as the most appropriate media for the growth of the selected Chlorella and Scenedesmus strains. Little variation in growth was observed for both cultures ten days into cultivation under varying nitrate concentrations. Phosphate optimum was shown to be 0.032g/l for Scenedesmus sp and 0.04g/l for Chlorella sp. Best lipid yield determined during exponential growth was achieved in cultures with 0.3g/L to 0.6g/L nitrate and phosphate as per BG11 medium. pH optimisation showed that cultures may be adapted to growth at higher pH over time. The optimum pH range for growth was determined to be narrow and was found to be between pH 10 and pH 11. Chlorella sp. was shown to be sustainable as a dominant culture in open pond system. Open pond systems however are prone to contamination by other species of microalgae within weeks of inoculation. / National Research Foundation.
55

Desempenho de trator agrícola em operação de preparo de solo utilizando biodiesel de palmeiras como combustível /

Lira, Thyago Augusto Medeiros. January 2018 (has links)
Orientador: Afonso Lopes / Banca: Newton La Scala Junior / Banca: Leomar Paulo de Lima / Banca: Gilberto Hirotsugu Azevedo Koike / Banca: Melina Cais Jejcic de Oliveira / Resumo: No trabalho são expostos panoramas mundiais relacionados às reservas totais provadas de petróleo, interligando-as com os importantes aspectos do biodiesel, fontes de matéria-prima, propriedades e características físico-químicas, com o intuito de justificar a importância do desenvolvimento de tecnologias e a utilização em motores ciclo diesel. São apresentadas também características das palmeiras que dão origem aos frutos: babaçu, buriti e tucumã, bem como as propriedades físico-químicas do biodiesel originado de palmeiras como babaçu, buriti e tucumã. Em seguida é descrita a metodologia utilizada no trabalho e as informações necessárias para a análise e a obtenção dos dados da pesquisa, abrangendo-as para os tipos de combustíveis utilizados, bem como os fatores e as diretrizes avaliados durante a execução da pesquisa. Também são tecidas considerações sobre a avaliação e a discussão dos dados relacionados ao desempenho de trator agrícola em operação de preparo de solo utilizando biodiesel de palmeiras como combustível (biodiesel de babaçu, buriti e tucumã em proporções de mistura com diesel B S50). A Pesquisa evidenciou que o óleo de babaçu, de buriti e de tucumã apresenta grande potencial na aplicabilidade da produção de biodiesel, desde que o óleo vegetal atenda às especificações da ANVISA, Resolução n.270/2005, e às normas de órgãos internacionais (American Oil Chemist's Society - AOCS e American Society for Testing and Materials - ASTM). Quanto aos testes realizados com bi... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In the paper, global scenarios related to the total proved reserves of petroleum are exposed, interlinking them with the important aspects of biodiesel, sources of raw material, properties and physical-chemical characteristics, in order to justify the importance of the development of technologies and the use in diesel cycle engines. The characteristics of the palm trees that give rise to the fruits are also presented: babaçu, buriti and tucumã, as well as the physicochemical properties of the biodiesel originated from palm trees such as babaçu, buriti and tucumã. Next, the methodology used in the work and the necessary information for the analysis and the obtaining of the research data are described, covering them for the types of fuels used, as well as the factors and the guidelines evaluated during the execution of the research. Considerations are also made on the evaluation and discussion of the data related to the performance of agricultural tractor in soil preparation using palm oil biodiesel as biodiesel (babassu, buriti and tucumã biodiesel in proportions of mixture with diesel B S50). The research evidenced that babaçu, buriti and tucumã oil presents great potential in the applicability of biodiesel production, provided that the vegetable oil meets the specifications of ANVISA, Resolution n.270 / 2005, and the norms of international organisms (American Oil Chemist's Society - AOCS and American Society for Testing and Materials - ASTM). As for the tests carried out wit... (Complete abstract click electronic access below) / Doutor
56

Análise econômica e de investimento da cultura do pinhão manso (Jatropha curcas L.)

Zanon, Natalia Barboza. January 2012 (has links)
Orientador: Maria Aparecida Anselmo Tarsitano / Banca: Silvia Maria Almeida L. Costa / Banca: Neli Cristina Belmiro dos Santos / Resumo: A busca por sistemas sustentáveis somada à gradual redução das reservas de petróleo, alternativas produtivas vêm sendo estudadas, visando obter sistemas economicamente viáveis, socialmente justos, ecologicamente adequados e energicamente equilibrados. Uma destas alternativas é o biodiesel, sendo que, o pinhão manso, dentre as culturas energéticas apontadas com grande potencial produtivo de óleo para fins combustíveis, é que apresenta cenário mais positivo. O Pinhão Manso tem despertado muito interesse a nível internacional e no Brasil por seu alto conteúdo de óleo (38 a 48% na semente) e baixo custo de produção, entretanto existe ainda falta de informação tecnológica, tanto agronômica como genética. Esta falta de informação limita o aumento de competitividade. O presente trabalho tem como objetivo central realizar uma análise econômica e de investimentosna cultura do Pinhão Manso, na região de Selvíria - MS. Os dados foram levantados a partir dos experimentos de campo, de entrevistas com técnicos e da literatura. Para o cálculo dos custos foi utilizada a estrutura do custo operacional total e estimados indicadores de lucratividade. Para análise de investimentos foram estimados o valor presente líquido, a taxa interna de retorno e o valor anual equivalente. Os resultados mostram que produtor recupera o capital investido no 9o ano de produção. Muito embora a relação B/C tenha sido de 1,3, o que pode considerar que, no horizonte de 15 anos, a atividade é rentável ao produtor, pode-se dizer que a atividade não é uma boa opção de investimento já que a TIR foi de 14,03%, valor esse pouco atrativo. O VAE total foi de 360,93, por se tratar de um valor maior que zero, afirma-se que a alternativa é economicamente viável. Apesar dos avanços no cultivo do pinhão manso ainda demandam muitas pesquisas, relacionadas não apenas a questões técnica como adubação e manejo fitossanitário, mas também... / Abstract: The search for sustainable systems coupled with the gradual reduction of oil reserves, alternatives production are being studied in order to obtain systems economically viable, socially just, ecologically appropriate and energetically balanced. One of these alternatives is biodiesel, and, Jatropha, among energy crops with great potential productive oil for fuel, is presenting more positive scenario. The Jatropha has attracted much interest internationally and in Brazil for its high oil content (38 to 48% in the seed) and low production cost, however there is still a lack of technological information, both genetic and agronomic. This lack of information limits the increase of competitiveness. The present study aims to conduct an economic and investment analysis of Jatropha in the region of Selvíria - MS. The data were collected from the field experiments, interviews with experts and literature. To calculate the costs was used the structure of total operating cost and estimated profitability indicators. For investment analysis were estimated net present value, internal rate of return and the annual value equivalent. The results show that producer retrieves the capital invested in the 9th year of production. Although the ratio B / C was of 1.3, which may consider that in the 15-year horizon, the activity is profitable to the producer, it can be said that the activity is not a good investment option since the IRR was of 14.03%, a value unattractive. The total EAV was 360.93, because it is a positive value it is stated that the alternative is economically viable. Despite advances in the cultivation of Jatropha still require much research, not only related to technical issues such as fertilization and pest management, but also socioeconomic / Mestre
57

Genetic engineering of Chlorella zofingiensis for enhanced astaxanthinbiosynthesis and assessment of the algal oil for biodiesel production

Liu, Jin, 刘进 January 2010 (has links)
published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
58

Life cycle analysis of different feedstocks of biodiesel production

Yu, Chuan, 余川 January 2012 (has links)
The scarcity of fossil fuel and its environmental impact have shifted the world focus on green innovations At a time when the use of fossil fuel means increasing energy scarcity and an environmental crisis in the world in which we live, we need green innovations now more than ever. Growing attention has been drawn to the use of biofuels, such as bioethanol and biodiesel, which have gradually come to make up part of the total energy supply. Uncertainties about the environmental and ecological aspects of the production and consumption of biofuel still exist despite its rapid development. A life cycle analysis (LCA) evaluates the two principal functional parameters 1) energy efficiency and 2) Greenhouse Gas (GHG) balance of different feedstocks for biodiesel production from the cradle to the grave. By accounting a life cycle analysis stage by stage, we can ascertain the change in GHG emissions and energy demand that result from the various uses of feedstocks for the production of biodiesel. In this thesis, various life cycle analysis models are reviewed and evaluated with emphasis on specific biofuels. Different LCA models depend on different LCA calculation under different situations, including GREET, LEM, SimaPro, etc. The software SimaPro was used to compare the life cycle GHG emissions and energy demand from conventional petroleum fuels and several hydro-processed renewable green diesels. A consistent methodology was used for selected fuel pathways to facilitate relatively equitable comparisons. The building of life cycle flow tree in SimaPro combined the input and output with an emphasis on the following stages 1) raw material farming and acquisition, 2)liquid fuel production, 3)transport, 4)refueling, 5)liquid fuel conversion to biodiesel and 6) end uses. Consistent impact assessment methods were chosen for simulation, equitable comparisons and comprehensive analysis of selected fuel pathways for the calculation of Global Warming Potential (GWP) and Cumulative Energy Demand (CED). However, the results of the entire lifetime estimates vary dramatically in production chains, which make it difficult to take a holistic view about energy intake and yields, economic costs and values, environmental impacts and their benefits. Apart from the diversity in system boundaries and life cycle inventories, a variance in terminologies and the limitations of interdisciplinary communication are the main factors that affect the quality of the results. / published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
59

Market penetration of biodiesel and ethanol

Szulczyk, Kenneth Ray, January 1900 (has links)
Thesis (Ph. D.)--Texas A&M University, 2007. / "Major Subject: Agricultural Economics" Title from author supplied metadata (automated record created on Nov. 2, 2007.) Vita. Abstract. Includes bibliographical references.
60

Modeling Oregon's biodiesel subsidies and their potential effects on the Willamette Valley agricultural landscape /

Siegel, Ryan W. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 69-73). Also available on the World Wide Web.

Page generated in 0.2447 seconds