• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 146
  • 77
  • 15
  • 10
  • 9
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • Tagged with
  • 292
  • 292
  • 195
  • 149
  • 103
  • 77
  • 73
  • 51
  • 42
  • 41
  • 39
  • 34
  • 32
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Risk for P-deficiency and consequently ineffective bacteria performance in an Membrane BioReactor for Kalmarsund WWTP

Karlsson, Sara January 2014 (has links)
MBR, Membrane BioReactor, is a relatively new wastewater treatment technique using membrane filtration to separate particles from the biologically treated water. By means of analyzing analysis results from KARV, the existing wastewater treatment plant in Kalmar, from the recent six years and assuming that PO4-P in the water from the secondary settling tank equalizes with total effluent phosphorus in an MBR, the opportunity of an MBR to reach future effluent requirements could be assessed. The future effluent requirement for phosphorus is expected to be 0.2 mg/L or 0.1 mg/L. Today the phosphorus effluent requirement in Kalmar is 0.3 mg/L total phosphorus as annual average. Results from data analysis presented in figures shows that with the same operation strategy as during the six evaluated years, the future requirements would not be reached. Phosphorus is essential for yield and performance of biomass in the biological treatment step. The starting position for the work is that the way of operation during the six recent years would have given exactly the right amount of P to the bacteria in the biological treatment step. An increased dose of chemicals for phosphorus removal could lead to P-deficiency in the biological treatment step and thus decreased efficiency. This effect could be an essential aspect in the design of a future MBR in Kalmar.
52

Modelling and optimization of microbial production of hydrogen on agro-municipal wastes.

Sekoai, Patrick Thabang. January 2013 (has links)
The indiscriminate use of fossil fuels has led to global problems of greenhouse gas emissions, environmental degradation and energy security. Developments of alternative and sustainable energy resources have assumed paramount importance over the past decades to curb these challenges. Biohydrogen is emerging as an alternative renewable source of energy and has received considerable attention in recent years due to its social, economic and environmental benefits. It can be generated by dark fermentation on Organic Fraction of Solid Municipal Waste (OFSMW). These OFSMW exist abundantly and poses disposal challenges. This study models and optimizes the production of biohydrogen on a mixture of agro-municipal wastes; it examines a semi-pilot scale production on these substrates and the feasibility of generating bioelectricity from the process effluents and reviews the prospect of enhancing fermentative biohydrogen development using miniaturized parallel bioreactors. The fermentation process of biohydrogen production on agro-municipal wastes was modelled and optimized using a two-stage design. A mixture design was used for determination of optimum proportions of co-substrates of Bean Husk (BH), Corn Stalk (CS) and OFSMW for biohydrogen production. The effects of operational setpoint parameters of substrate concentration, pH, temperature and Hydraulic Retention Time (HRT) on hydrogen response using the mixed substrates were modelled and optimized using box-behnken design. The optimized mixtures were in the ratio of OFSMW: BH: CS = 30:0:0 and OFSMW: BH: CS = 15:15:0 with yields of 56.47 ml H2/g TVS and 41.16 ml H2/g TVS respectively. Optimization on physico-chemical parameters using the improved substrate suggested optimal setpoints of 40.45 g/l, 7.9, 30.29 oC and 86.28 h for substrate concentration, pH, temperature and HRT respectively and hydrogen yield of 57.73 ml H2/g TVS. The quadratic polynomial models from the mixture and box-behnken design had a coefficient of determination (R2) of 0.94 and 0.79 respectively, suggesting that the models were adequate to navigate the optimization space. The feasibility of a large-scale biohydrogen fermentation process was studied using the optimized operational setpoints. A semi-pilot scale biohydrogen fermentation process was carried out in 10 L bioreactor and the potential of generating bioelectricity from the process effluents was further assessed using a two-chambered Microbial Fuel Cell (MFC) process. The maximum hydrogen fraction of 46.7% and hydrogen yield of 246.93 ml H2/g TVS were obtained from the semi-pilot process. The maximum electrical power and current densities of 0.21 W/m2 and 0.74 A/m2 respectively were recorded at 500 Ω and the chemical oxygen demand (COD) removal efficiency of 50.1% was achieved from the MFC process. This study has highlighted the feasibility of applying agricultural and municipal wastes for large-scale microbial production of hydrogen, with a simultaneous generation of bioelectricity from the process effluents. Furthermore, the potential of generating an economical feasible biohydrogen production process from these waste materials was demonstrated in this work. Keywords: Biohydrogen production, Organic Fraction of Solid Municipal Waste (OFSMW), Modelling and optimization, Fermentation process, Renewable energy, Bioenergy / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
53

The efficiency and mechanisms for pollutant removal in biological wastewater treatment systems /

Cameron, Kimberley A. January 2001 (has links)
The research project was initiated to refine the knowledge available on the treatment of rural municipal wastewater by constructed wetlands. Field and laboratory studies were conducted to determine the treatment capacity of a constructed wetland system and to determine a substrate that would be most efficient as a phosphorus adsorption filter. The wetland system consisted of three free-water surface cells, three blast furnace slag filters and a vegetated filter strip, treating municipal wastewater. Bimonthly water samples at the inlet and outlet of each component of the wetland system were analysed for biochemical oxygen demand, nitrate and nitrite, ammonia and ammonium, total Kjeldahl nitrogen, total suspended solids, total phosphorus, ortho-phosphate, fecal coliforms and E. coli. Phosphorus and nitrogen concentrations were determined in the sediment, plant tissue and water column of the free-surface wetland cells. The free-surface wetland cells achieved removals as follows: ammonia and ammonium (52%), total Kjeldahl nitrogen (37%), total suspended solids (93%), total phosphorus (90%) and ortho-phosphate (82%). The vegetated filter strip achieved removals as follows: ammonia and ammonium (28%), total Kjeldahl nitrogen (11%), total suspended solids (22%), total phosphorus (5%) and ortho-phosphate (0%). The slag filters reduced total phosphorus by more than 99%. Phosphorus adsorption measurements were conducted on slag, calcite and shale. Slag was found to be the most effective at removing phosphate.
54

Studies of tumor control probability modeling in glioblastoma multiforme and optimization techniques in mammosite breast brachytherapy

Prescott, Kimberly B. January 2008 (has links) (PDF)
Thesis--University of Oklahoma. / Bibliography: leaves 123-125.
55

Tertiary treatment in integrated algal ponding systems / Optimising Tertiary Treatment Within Integrated Algal Ponding Systems

Wells, Charles Digby January 2005 (has links)
Inadequate sanitation is one of the leading causes of water pollution and consequently illness in many underdeveloped countries, including South Africa and, specifically, the Eastern Cape Province, where cholera has become endemic. As modern wastewater treatment processes are often energy intensive and expensive, they are not suitable for use in these areas. There is thus a need to develop more sustainable wastewater treatment technologies for application in smaller communities. The integrated algal ponding system (IAPS) was identified as a possible solution to this wastewater management problem and was investigated for adaptation to local conditions, at the Rhodes University Environmental Experimental Field Station in Grahamstown, South Africa. The system was monitored over a period of nine years, with various configuration adjustments of the high rate algal pond (HRAP) unit operation investigated. Under standard operating conditions, the system was able to achieve levels of nutrient and organic removal comparable with conventional wastewater treatment works. The mean nitrate level achieved in the effluent was below the 15mg.l-1 South African discharge standard, however, nitrate removal in the IAPS was found to be inconsistent. Although the system was unable to sustain chemical oxygen demand (COD) removal to below the 75mg.l-1 South African discharge standard, a removal rate of 87% was recorded, with the residual COD remaining in the form of algal biomass. Previous studies in the Eastern Cape Province have shown that few small wastewater treatment works produce effluent that meets the microbial count specification. Therefore, in addition to the collation of IAPS data from the entire nine year monitoring period, this study also investigated the use of the HRAP as an independent unit operation for disinfection of effluent from small sewage plants. It was demonstrated that the independent high rate algal pond (IHRAP) as a free standing unit operation could consistently produce water with Escherichia coli counts of 0cfu.100ml-1. The observed effect was related to a number of possible conditions prevailing in the system, including elevated pH, sunlight and dissolved oxygen. It was also found that the IHRAP greatly enhanced the nutrient removal capabilities of the conventional IAPS, making it possible to reliably and consistently maintain phosphate and ammonium levels in the final effluent to below 5mg.l-1 and 2mg.l-1 respectively (South African discharge standards are 10mg.l-1 and 3mg.l-1 in each case). The quality of the final effluent produced by the optimisation of the IAPS would allow it to be used for irrigation, thereby providing an alternative water source in water stressed areas. The system also proved to be exceptionally robust and data collected during periods of intensive and low management regimes were broadly comparable. Results of the 9 year study have demonstrated reliable performance of the IAPS and its use an appropriate, sustainable wastewater treatment option for small communities.
56

The molecular microbial ecology of sulfate reduction in the Rhodes BioSURE process

Chauke, Chesa Gift January 2002 (has links)
The research reported here investigated the use of a Baffle Reactor in order to study aspects of the biological sulfur cycle, where a floating sulfur biofilm formation occurs and where complex organic compounds provide electron donor sources. The development of a laboratory-scale Baffle Reactor model system satisfied the requirements for sulfate reducing bacterial biomass growth and sulfur biofilm formation. Since relatively little is known about the microbial ecology of floating sulfur biofilm systems, this study was undertaken to describe the sulfate reducing sludge population of the system together with its performance. A combination of culture- and molecular-based techniques were applied in this study in order to investigate the microbial ecology of the sulfate-reducing bacteria component of the system. These techniques enabled the identification and the analysis of the distribution of different sulfate reducing bacterial strains found within the sludge bioreactors. Strains isolated from the sludge were characterised based on culture appearance, gram staining and scanning electron microscopy morphology. Molecular methods based on the PCR-amplified 16S rRNA including denaturing gradient gel electrophoresis were employed in order to characterise sulfate-reducing bacteria within the reactors. Three novel Gram negative sulfate-reducing bacteria strains were isolated from the sludge population. Strains isolated were tentatively named Desulfomonas rhodensis, Desulfomonas makanaiensis, and Clostridium sulforhodensis. Results obtained from the Baffle Reactor showed that three dominant species were isolated from the DNA extracted from the whole bacterial population by peR. Three of these were similar to those mentioned above. The presence of these three novel unidentified species suggest that there are a range of other novel organisms involved in sulfate reduction processes.
57

Development of integrated biological processing for the biodesalination of sulphate- and metal-rich wastewaters

Boshoff, Genevieve Ann January 1999 (has links)
The substantial pollution threat to the South African environment from acid mine drainage (AMD) effluents has been well documented. Due to the juvenile nature of acidity in these flows, any remediation strategies implemented will need to function effectively and at low cost for long periods of time. The widespread use of sulphate reducing biological systems for the treatment of such effluents, and in particular large volume flows, has been limited. The supply of inexpensive electron donor and carbon sources, as well as appropriate reactor designs capable of handling large volume flows, have been identified as among the principal factors limiting development of this technology. The broad aim of the research programme reported here was to undertake an evaluation of the feasibility of an algal-bacterial integrated ponding system for the treatment of AMD, and the waste stabilisation pond (WSP) as an appropriate reactor design for this application. The study attempted to demonstrate the feasibility of individual unit operations in a proposed process train using complex organic carbon serving as the electron donor source for the sulphate reducing bacteria (SRB). Studies were undertaken as laboratory and pilot-scale investigations. Tannery effluent was shown to be a functional carbon source for biological sulphate reduction, with effective removal of sulphate and organics being recorded. In turn, the use of biological sulphate reduction for the treatment of tannery effluent was demonstrated. Algal biomass was shown in laboratory studies to function as an effective carbon source for biological sulphate reduction. It is known that micro-algae produce large quantities of photosynthate which is released to the growth medium under conditions of physiological stress. The potential for the use of photosynthate production in high rate algal ponding systems and its manipulation and use as a sustainable carbon source for sulphate reduction was investigated. Growth of a mixed culture of Dunaliella under conditions of light, temperature and salinity stress demonstrated production of large quantities of organic carbon. However, growth was inhibited at high temperatures. An elevation of salinity levels led to a decrease in growth of Dunaliella, but to increased organic carbon production. Spirulina spp., on the other hand, grew well at higher temperatures but showed the highest organic carbon production, and release to the medium, under low light conditions. These results led to a proposed process for the integration of algal ponding into an integrated system for the treatment of AMD. The algal biomass may be fed into the anaerobic digester as a carbon source, or it may be passed into a High Rate Algal Pond (HRAP) where it is stressed to enhance the organic carbon content. This can then be fed into the anaerobic digester as a carbon source. The impact of high levels of sulphide in the water feeding to the algal growth compartment was investigated. Spirulina spp. isolated from a tannery waste stabilisation pond was shown to be a sulphidophilic strain of cyanobacterium, capable of being adapted to high concentrations of sulphide. Dunaliella salina on the other hand was less tolerant. These results demonstrated the practical use of algal biomass providing an oxygen-rich cap for odour control on the surface of the facultative pond as well for the secondary treatment of sulphide-rich overflow to the High Rate Algal Pond. The ability of micro-algae to elevate the pH of their surrounding environment was evaluated as a functional precipitant and neutralisation reagent for acidic metal containing wastewater. Spirulina spp. was shown to perform effectively. D. salina was less functional in this environment. Anacystis spp. was effective in elevating the pH of a defined medium as well as a zinc-rich effluent. These results indicated the practicality of a neutralising function for algal ponds in the treatment of AMD. Metal removal in the system was found to be a combined function of sulphide precipitation, removal by binding to micro-algal biomass and extracellular polymeric substances. The feasibility of waste stabilisation ponding technology use for the treatment of large volume AMD effluents was provisionally demonstrated. It was shown that complex carbon sources would be used as efficient electron donors for sulphate reduction. The integration of algal ponding into the system provides for the generation of a sustainable carbon source, odour control with the recycling of oxygen-rich water onto the top of the facultative pond, secondary treatment of the anaerobic digester overflow, and the neutralisation of the incoming acidic effluents and removal of heavy metals. Integration of the individual unit operations, the feasibility of which has been provisionally demonstrated in this study, into a continuous process train is being investigated in follow-upstudies.
58

The microbial production of polyphenol oxidase enzyme systems and their application in the treatment of phenolic wastewaters

Scherman, Patricia Ann (neé Goetch) January 1992 (has links)
Phenolic compounds are a group of organic chemicals present in the wastewaters of many synthetic industrial processes. Due to their extreme toxicity to man and animals, and deleterious impact on the environment, a range of techniques exist for the effective treatment and disposal of these pollutants. Biological degradation using microbial enzymes presents a valuable alternative to conventional wastewater treatment systems. This research was therefore initiated to investigate the polyphenol oxidase enzyme system and the feasibility of its application for effluent treatment and studies in organic solvents. The enzyme system is widely distributed in nature, with Agaricus bisporus (the common mushroom) being the best known producer. Biochemical investigations of the enzyme system were therefore carried out using this extract. A screening programme was initiated to identify microbial polyphenol oxidase producers which could be cultured in liquid media, thereby enabling the production of large quantities of enzyme in fermentation systems. Extensive growth optimization and enzyme induction and optimization studies were carried out on selected cultures. A number of good producers were isolated, namely a bacterial culture designated AECI culture no. 26, Streptomyces antibioticus, Streptomyces glaucescens and a manipulated strain, Streptomyces lividans (pIJ702). Enzyme production by Agaricus bisporus mycelia was optimized in deep-liquid culture; enzyme extracts showed high phenol removal efficiencies. Streptomyces antibioticus, Streptomyces glaucescens, Streptomyces lividans (pIJ702) and AECI culture no. 26 whole cells were also investigated for phenol-removing ability in simulated phenolic effluents. The use of whole cells reduces enzyme inactivation and instability due to the protection of the enzyme system within the cell. All cultures showed improved removal efficiencies in phenolic growth media. These results strongly suggest their use for phenol removal in continuous systems.
59

Investigation into the biological removal of sulphate from ethanol distillery wastewater using sulphate-reducing prokaryotes

Smuts, Lizl January 2005 (has links)
Ethanol production wastewater is known to be toxic, and is not easily biodegradable. It also consists of a variety of coloured components adding to the complex composition of this wastewater. Disposal of this wastewater into water courses is not recommended and yet is performed all over the world. Investigation of this wastewater found that there was a high concentration of sulphate which, in the presence of sulphate-reducing prokaryotes can cause sulphide corrosion of cement. The concentration of sulphate in the wastewater was approximately 2770 mg/L. It was also found that the wastewater pH was very low and discharge of the wastewater into the wastewater treatment works caused a negative impact on the overall quality of the final wastewater discharged to sea. It was found using FISH techniques that there were no sulphate-reducing prokaryotes present in the wastewaters but that a sulphate-reducing population existed on the sewer wall. An anaerobic contact process was designed to treat this wastewater targeting sulphate reduction to sulphide, to be converted into elemental sulphur and to increase the wastewater pH. The process did not achieve this aim and only approximately 20-30 % reduction in sulphate from the wastewater was achieved with little to no change in the pH. A 95 % reduction in sulphate concentration was needed in order to reach acceptable discharge limits. Sulphate reduction could not be carried out, even under ideal laboratory conditions. It was found that the barrier causing the digester failure was the high concentration of phenols present in the wastewater (3.3 g/L) together with the production of high concentrations of volatile fatty acids (on average 13 g acetic/L). These two components are known to cause digester failure, especially phenols, and phenols are usually only degraded by fungal species. It was concluded that the wastewater itself was not amenable to this method of biological treatment.
60

Removal of lead from solution by the non-viable biomass of the water fern Azolla filiculoides

Sanyahumbi, Douglas January 1999 (has links)
The removal of lead from aqueous solution and lead-acid battery manufacturing waste-water by the non-viable biomass of the water fern Azolla filiculoides was investigated in both batch and column reactors. The maximum lead uptake by the Azolla biomass at a pH value of approximately 5, was found to be 100 mg lead/g biomass from aqueous solution. Lead removal varied from 30% of the initial lead concentration at pH 1.5 to approximately 95% at pH values of 3.5 and 5.6. Lead removal from aqueous solution decreased to 30% of the initial lead concentration if the lead concentration was initially over 400 mg/l. At initial lead concentrations of less than 400 mg/l, percentage lead removal was found to be over 90% of the initial lead concentration. Lead removal remained at approximately 90% between 10°C and 50°C. Biomass concentration (4-8 mg/l) had little effect on lead removal. The presence of iron (Fe) and lead, copper (Cu) and lead or all three metal ions in solution at varying ratios to each other did not appear to have any significant effect on lead removal. Percentage lead, copper and iron removal from aqueous solution was 80-95, 45-50 and 65-75% respectively for the different multiple-metal solutions studied. No break-through points were observed for lead removal from aqueous solutions in column reactors, with initial lead concentrations of less than 100 mg/l at varying flow rates of 2, 5 and 10 ml/min. This suggested that flow rate, and therefore retention time, had little effect on percentage lead removal from aqueous solution, which was more that 95%, at low initial lead concentrations (less than 100 mg/l). At initial lead concentrations of 200 mg/l or more, an increase in flow rate, which equates to a decrease in column retention time, resulted in break-through points occurring earlier in the column run. Percentage lead removal values, from lead-acid battery efiluent in column systems, of over 95% were achieved. Desorption of approximately 30% and 40% of bound lead was achieved, with 0.5 M HNO₃ in a volume of 50 ml, from two lead-acid battery. Repeated adsorption and desorption of lead by the Azalia biomass over 10 cycles did not result in any decrease in the percentage lead removal from effluent, which strongly suggested that the Azalla biomass could be re-used a number of times without deterioration in its physical integrity, or lead removal capacity. No evidence of deterioration in the Azolla biomass's physical integrity after 10 successive adsorption and desorption procedures was observed using scanning electron microscopy. The Azolla filiculoides biomass was, therefore, found to be able to effectively remove lead from aqueous solution and lead-acid battery effluent repeatedly, with no observed reduction in it's uptake capacity or physical integrity.

Page generated in 0.1123 seconds