Spelling suggestions: "subject:"biology, 7molecular (0307)"" "subject:"biology, bimolecular (0307)""
41 |
Real-time PCR analysis of age-dependent alterations in the RVLM neurotransmitter gene expression profile of F344 ratsCraig, Robin Ann January 1900 (has links)
Doctor of Philosophy / Department of Anatomy and Physiology / Michael J. Kenney / It is well established that normal aging is associated with progressive increases in efferent sympathetic nerve discharge (SND). Type II diabetes, obesity, heart failure, and hypertension are pathologies that have been attributed to both the processes of aging and sympathetic dysfunction, exemplifying the importance of understanding central regulation of SND during aging. However, the central mechanisms mediating altered SND with advancing age remain unclear. The rostral ventral lateral medulla (RVLM) is a brainstem region critically involved in setting the basal level of sympathetic outflow and cardiovascular function. Indeed, the RVLM is the only presympathetic region that when bilaterally inactivated results in profound reductions in both SND and arterial pressure. Glutamatergic influences in RVLM activity are powerfully inhibited by tonic GABAergic neural inputs originating from the caudal ventral lateral medulla (CVLM); effects that are mediated by GABAA receptors located on presympathetic neuronal cell bodies within the RVLM. In the present study we proposed that reductions in GABA[subscript A] receptor subunit gene expression may reflect withdrawal of GABAergic tone in the RVLM thereby contributing to the basal sympathetic activation that occurs with advancing age. Therefore, the objective of the current study was to identify age-related changes in the constitutive expression of genes related to GABAergic and muscarinic, nicotinic and dopaminergic receptor systems due to their reported involvement in modulating GABA[subscript A] receptor function, in the RVLM of adult young (3-5 mo. old), middle-aged (12 mo. old), weight stable presenescent (24-25 mo. old) and senescent (>24 mo. old) Fischer 344 (F344) rats using a commercially available real-time PCR array. Real-time analysis revealed nonuniform and age-associated changes in the RVLM GABA, muscarinic, nicotinic and dopaminergic neurotransmitter gene expression profile between young and middle-aged F344 rats. Heterogeneous expression of genes related to these neurotransmitters was also observed between presenescent and senescent F344 rats. Our results suggest that potential changes in neurotransmitter synthesis and degradation, uptake, transport, signaling and receptor subunit composition may account for the sympathoexcitatory state that is commonly observed in the aged.
|
42 |
Molecular evaluation of Ehrlichia chaffeensisSirigireddy, Kamesh Reddy January 1900 (has links)
Doctor of Philosophy / Department of Diagnostic Medicine/Pathobiology / Roman Reddy R. Ganta / Ehrlichia chaffeensis, an emerging tick-borne pathogen, causes human monocytic
ehrlichiosis (HME). The relationship between E. chaffeensis and its target cells in ticks and
vertebrates is critical as the organism must persist in them. We hypothesize that E. chaffeensis
alters gene expression in support of adapting to dual hosts. In support of testing this
hypothesis, we developed an ORF-based microarray and performed global transcriptional
analysis on the pathogen grown in macrophage and tick cells. The analysis revealed the
expression of about 30% of all the predicted E. chaffeensis genes, in macrophages or tick cell.
Two-thirds of the transcribed genes are common for both host cell backgrounds. About 20% of
the commonly expressed genes also varied in expression levels which ranged from two to five
fold. Microarray data was verified by RT-PCR for a subset of randomly selected genes.
Together, this is the first report describing the global host cell-specific gene expression patterns
in E. chaffeensis.
Differential gene expression may be an important adaptive mechanism used by E.
chaffeensis for its continued survival in dual hosts. To test this hypothesis, we established
many basic protocols and tools needed for performing mutational analysis in E. chaffeensis.
Four antibiotic selection markers; gentamicin, chloramphenicol, spectinomycin and rifampin, and
two promoters constitutively expressed in E. chaffeensis, genes rpsL and tr, were identified.
Two regions of the genome were also identified for performing initial mutational analysis.
Several plasmid constructs were also made. The optimal conditions for introducing these
plasmids into host cell-free viable E. chaffeensis organisms were also established. The
molecular evaluation of several E. chaffeensis transformants using these plasmids suggested
that the plasmids gained entry, but failed to get integrated into the genome or remain in the
bacteria for longer periods of time.
In summary, we demonstrated global host cell-specific differential gene expression in E.
chaffeensis by employing microarray analysis. Numerous host-specific expressed genes will be
important for studies leading to effective methods of control. We also established several basic
protocols and tools needed for performing mutational analysis useful in evaluating the impact of
the loss of expression of uniquely expressed genes.
|
43 |
Immune-related protein complexes and serpin-1 isoforms in Manduca sexta plasmaRagan, Emily J. January 1900 (has links)
Doctor of Philosophy / Department of Biochemistry / Michael R. Kanost / Manduca sexta is a large insect species well-suited for biochemical analysis of proteins in the hemolymph (blood) that respond to infection. Insects lack adaptive immunity and rely entirely on innate immunity to prevent and manage infection. Immune response proteins include proteins that bind pathogens and activate serine proteases, which function in proteolytic cascades that trigger effector responses, such as antimicrobial peptide production and prophenoloxidase activation. Phenoloxidase catalyzes melanin synthesis, which leads to microbial killing.
I used MALDI-TOF/TOF mass spectrometry and immunoblotting to identify M. sexta proteins present in putative immune complexes. From analyses of high molecular weight gel filtration fractions of plasma activated by microbial polysaccharides, I detected hemocytin, prophenoloxidase, and cleaved serine protease homologs, suggesting prophenoloxidase and serine protease homologs form large complexes in plasma. I used in vitro bacterial binding assays to identify hemolymph proteins that bind either directly or indirectly to the surface of bacteria or curdlan. Prophenoloxidase, annexin IX, and hemocyte aggregation inhibitor protein were found bound to all the samples tested, indicating they play a role in the early stage of immune response.
Serpins regulate specific active proteases by covalently binding and forming serpin-protease complexes. Serpin-1, an abundant plasma protein, has an alternatively spliced ninth exon encoding 12 serpin-1 isoforms that differ in inhibitory selectivity. RT-PCR showed that all 12 isoforms are expressed in hemocytes, fat body, and midgut. Comparisons of naïve and immune-challenged hemocytes and fat body indicated the immune-related upregulation of serpin-1A but not the other isoforms. Using immunoaffinity chromatography I isolated two serpin-1-protease complexes from plasma after activation with bacterial lipopolysaccharide. MALDI-TOF/TOF analysis of these serpin-1-protease complexes identified the digestive enzyme chymotrypsin as a specific target of serpin-1K. Nine out of the twelve serpin-1 isoforms were identified from control plasma at the protein level using 2D-PAGE. Serpin-1 protease complexes were identified by 2D-PAGE analysis: serpin-1A, E and J were found to be complexed with hemolymph proteinase-8 and an unidentified isoform of serpin-1 was complexed with hemolymph proteinase-1. Discovering the serpin-1 isoforms that inhibit specific proteases enhances our understanding of the regulation of proteolytic cascades in M. sexta.
|
44 |
Coiled-coil domain-containing protein 69 (CCDC69) acts as a scaffold and a microtubule-destabilizing factor to regulate central spindle assemblyPal, Debjani January 1900 (has links)
Master of Science / Department of Biochemistry / Qize Wei / Proper regulation of mitosis and cytokinesis is fundamentally important for all living
organisms. During anaphase, antiparallel microtubules are bundled between the separating chromosomes, forming the central spindle (also called the spindle midzone), and the myosin contractile ring is assembled at the equatorial cortex. Regulators of central spindle formation and myosin contractile ring assembly are mostly restricted to the interdigitated microtubules of central spindles and they can be collectively called midzone components. It is thought that characteristic microtubule configurations during mitosis and cytokinesis are dictated by the coordinated action of microtubule-stabilizing and -destabilizing factors. Although extensive investigations have focused on understanding the roles of microtubule-bundling/stabilizing factors in controlling central spindle formation, efforts have been lacking in aiming to understand how microtubule-destabilizing factors regulate the assembly of central spindles. This dissertation describes the role of a novel microtubule-destabilizing factor termed CCDC69 (coiled-coil domain-containing protein 69) in controlling the assembly of central spindles and the recruitment of midzone components. Endogenous CCDC69 was localized to the
nucleus during interphase and to the central spindle during anaphase. Exogenous expression of CCDC69 in HeLa cells destabilized microtubules and disrupted the formation of bipolar mitotic spindles. RNA interference (RNAi)-mediated knockdown of CCDC69 led to the formation of aberrant central spindles and interfered with the localization of midzone components such as
aurora B kinase, protein regulator of cytokinesis 1 (PRC1), MgcRacGAP/HsCYK-4, and pololike kinase 1 (Plk1) at the central spindle. CCDC69 knockdown also decreased equatorial RhoA staining, indicating that CCDC69 deficiency can impair equatorial RhoA activation and ultimately lead to cytokinesis defects. Four coiled-coil domains were found in CCDC69 and the
C terminal coiled-coil domain was required for interaction with aurora B. Disruption of aurora B function in HeLa cells by treatment with a small chemical inhibitor led to the mislocalization of CCDC69 at the central spindle. Further, vitro kinase assay showed that Plk1 could phosphorylate CCDC69. Taken together, we propose that CCDC69 acts as a scaffold and a microtubule-destabilizing
factor to control the recruitment of midzone components and the assembly of central spindles.
|
45 |
Differential expression of for, fax, and U2Af orthologs among three termite castes of the termite, Reticulitermes flavipes (Isoptera: rhinotermitidae)Urban, Joshua Raymond January 1900 (has links)
Master of Science / Department of Entomology / Srinivas Kambhampati / Termites (Isoptera) are eusocial insects and exhibit highly complex eusocial behavior.
Eusociality is characterized by the presence of castes (workers, soldiers, reproductives),
polyphenisms (same genotype exhibiting multiple phenotypes), flexible developmental
pathways, complex communication, cooperative brood care, construction and maintenance of
complex nests, and division of labor. Previous studies on honey bees implicated several genes in
caste-specific behavior; here, we investigate if orthologs of such genes are present in termites
and if so, whether they are expressed differentially among the castes. A candidate gene approach
using degenerate primers was used to amplify three candidate genes in the termite Reticulitermes
flavipes. Quantitative real time PCR analysis revealed differential expression among termite
workers, soldiers, and alates, with a general pattern of higher expression in alates. These results
provide information on three novel genes in the termite R. flavipes.
|
46 |
Characterization of chitin synthase and chitinase gene families from the African malaria mosquitoZhang, Xin January 1900 (has links)
Doctor of Philosophy / Department of Entomology / Kun Yan Zhu / Chitin metabolism represents an attractive target site for combating insect pests as insect growth and development are strictly dependent on precisely toned chitin synthesis and degradation and this process is absent in humans and other vertebrates. However, current understanding on this process and the involved enzymes is rather limited in insects. In this study, two chitin synthase genes (AgCHS1 and AgCHS2 or AgCHSA and AgCHSB), and 20 chitinase and chitinase-like genes (groups I-VIII) presumably encoding the enzymes for chitin biosynthesis and degradation, respectively, were identified and characterized in African malaria mosquito, Anopheles gambiae. Immunohistochemistry analysis and developmental stage- and tissue-dependent transcript profiling by using reverse transcription PCR, real-time quantitative PCR, and in situ hybridization revealed new information on these genes. Current understanding on chitin synthases is extended by the expression profiles such as the localization of AgCHS1 and AgCHS2 transcripts in eggs, AgCHS2 transcripts in the posterior larval midgut, AgCHS1 and AgCHS2 proteins in the compound eyes, and AgCHS2 enzyme in pupal inter-segments. Chitinase and chitinase-like genes are highly diverse in their gene structure, domain organization, and stage- and tissue-specific expression patterns. Most of these genes were expressed in several stages. However, some genes are stage- and tissue-specific such as AgCht8 mainly in pupal and adult stages, AgCht2 and AgCht12 specifically in foregut, AgCht13 exclusively in midgut.
Functional analysis of each chitin synthase gene was conducted by using the chitosan/dsRNA nanoparticle-based RNA interference (RNAi) through larval feeding. The repression of the AgCHS1 transcripts which are predominantly expressed in carcass initiated
from the mosquito larval feeding of dsRNA suggests the systemic nature of RNAi in mosquito larvae. In addition, silencing of AgCHS1 increased larval susceptibilities to diflubenzuron, whereas silencing of AgCHS2 enhanced the peritrophic matrix disruption and thus increased larval susceptibilities to calcofluor white or dithiothreitol. Furthermore, a non-radioactive method was adapted and optimized to examine the chitin synthase activity in mosquitoes. By using this method, diflubenzuron and nikkomycin Z show limited in vitro inhibition on chitin synthase at high concentration in cell free system, whereas no in vivo inhibition was observed.
|
47 |
Porcine innate antiviral immunity: host defense peptides and toll-like receptorsSang, Yongming January 1900 (has links)
Doctor of Philosophy / Department of Anatomy and Physiology / Chris R. Ross / The immediate antiviral defense residing in the innate immune system of multicellular organisms critically determines the outcome of viral infection. This dissertation presents a study of the "effectors" and "receptors" of porcine innate immunity in infection caused by porcine reproductive and respiratory syndrome virus (PRRSV), which is the most devastating pathogen impacting the swine industry.
In the first investigation, eleven novel porcine host defense peptides (HDPs), [Beta]-defensins (pBDs), were identified and characterized. All of these peptides have a consensus [Beta]-defensin motif and phylogenetically are similar to orthologs from other species. A differential expression pattern for these 11 newly identified genes was found. For example, pBD-2 and pBD-3 were expressed in bone marrow, lung, skin and other lymphoid tissues. pBD-2 and pBD-3 were further characterized for their gene structure, and antimicrobial activity of synthetic peptides.
The second study was conducted to evaluate PRRSV-induced differential expression of porcine HDPs and direct antiviral activity of selected HDPs against PRRSV. In vitro incubation of PRRSV with synthetic pBD-3 or protegrin-4 (PG-4) significantly inhibited viral infectivity. Using nine protegrin-derived peptides, it was determined that cyclization of PG-4 increased anti-PRRSV activity and mutation of some residues in PG-4 diminished some of the activity. These findings suggest the potential role of porcine HDPs as a group of innate antiviral effectors.
In the third and fourth investigations, porcine Toll-like receptor (TLR) 3 and TLR7 were identified and functionally expressed. Increased expression of TLR3 was observed in PRRSV-infected porcine lungs. Stimulation of porcine alovelar macrophages with poly (I:C), a synthetic TLR3 ligand, increased expression of interferon-[Beta] and suppressed PRRSV infectivity. Activation of porcine TLR3 overexpressed in a PRRSV-sensitive cell line, elicited antiviral responses to PRRSV infection. Partial silencing of TLR3 in PAMs resulted in increased PRRSV infection. In summary, these data provide molecular information on porcine TLR3 and TLR7, and their involvement in PRRSV pathogenesis, which may elicit new strategies to prevent this costly swine disease.
|
48 |
Rat umbilical cord derived stromal cells maintain markers of pluripotency: Oct4, Nanog, Sox2, and alkaline phosphatase in mouse embryonic stem cells in the absence of LIF and 2‐MCEHong, James S. January 1900 (has links)
Master of Science / Department of Anatomy and Physiology / Mark L. Weiss / When mouse embryonic stem cells (ESCs) were grown on mitotically inactivated rat umbilical cord-derived stromal cells (RUCs) in the absence of leukemia inhibitory factor (LIF) and 2-mercaptoethanol (2-MCE), the ESCs showed alkaline phosphatase (AP) staining. ESCs cultured on RUCs maintain expression of the following pluripotency genes, Nanog, Sox2 and Oct4 and grow at a slower rate when compared with ESCs grown on mitotically inactivated mouse embryonic fibroblasts (MEFs). Differences in gene expression for the markers of pluripotency Oct4, Sox2 and Nanog, AP staining and ESC growth rate were also observed after LIF and 2-MCE were removed from the co-cultures. Reverse transcriptase polymerase chain reaction (RT-PCR) suggested differences in Sox2 and Nanog mRNA expression, with both genes being expressed at higher levels in the ESCs cultured on RUCs in the absence of LIF/2-MCE as compared to ESCs cultured on MEFs. Semi-quantitative RT-PCR indicated that Nanog expression was higher when ESCs were grown on RUCs in the absence of LIF and 2-MCE as compared to MEFs in the same treatment conditions. Bisulfite-mediated methylation analysis of the Nanog proximal promoter suggested that the maintenance of Nanog gene expression found in ESCs grown on RUCs after culture for 96 hours in the absence of LIF/2-MCE may be due to prevention of methylation of the CpG dinucleotides in the Nanog proximal promoter as compared to ESCs grown on MEFs. Thus, RUCs may release factors into the medium that maintain the pluripotent state of mouse ESCs in the absence of LIF and 2-MCE.
|
49 |
Phenotypic characterisation of the tremor mutant and AAV mediated aspartoacylase gene transfer in the rat model of Canavan diseaseMcPhee, Scott William John January 2004 (has links)
The doctoral studies described in this thesis involve the phenotypic characterization of the tremor rat, an animal model of Canavan disease, and a proof of principle gene transfer study in this model. The phenotype of the tremor rat is examined at the genetic, molecular, cellular, neurochemical, physical and behavioural levels, and tremor mutants are described within the context of Canavan disease. Tremor mutants appear to share many phenotypes with both human patients and to the knock-out mouse model. The deletion of aspartoacylase results in a total loss of the capacity to metabolize N-acetyl-aspartate to acetate and aspartate in brain, leading to elevations in brain N-acetyl-aspartate levels, changes in cell and tissue morphology, and physical and behavioural deficits including mild akinesia and loss of normal motor coordination and balance. Parallel to this work was the development of a gene transfer approach to treat Canavan disease, involving Adeno-associated virus mediated delivery of aspartoacylase to the mammalian central nervous system. Gene transfer was undertaken in tremor rat mutants, and analysis was made of gene expression and function as well as the effect of aspartoacylase expression on improving the phenotypic deficits observed in mutant animals. Gene expression was observed at the RNA and protein level, with recombinant protein observed in cell soma and processes. Although not significant the data suggested a trend of decreased NAA levels after aspartoacylase transfer in comparison to animals injected with a vector encoding green fluorescent protein. Improvement was noted in the rotorod phenotype with mutant animals receiving aspartoacylase gene transfer performing better at tests of balance and coordinated locomotion than animals receiving a control vector. The study provided evidence that Adeno-associated virus mediated aspartoacylase gene transfer to the brain improves some of the deficits in tremor mutants, and supports the rationale of human gene transfer for Canavan disease. / Subscription resource available via Digital Dissertations only.
|
50 |
Phenotypic characterisation of the tremor mutant and AAV mediated aspartoacylase gene transfer in the rat model of Canavan diseaseMcPhee, Scott William John January 2004 (has links)
The doctoral studies described in this thesis involve the phenotypic characterization of the tremor rat, an animal model of Canavan disease, and a proof of principle gene transfer study in this model. The phenotype of the tremor rat is examined at the genetic, molecular, cellular, neurochemical, physical and behavioural levels, and tremor mutants are described within the context of Canavan disease. Tremor mutants appear to share many phenotypes with both human patients and to the knock-out mouse model. The deletion of aspartoacylase results in a total loss of the capacity to metabolize N-acetyl-aspartate to acetate and aspartate in brain, leading to elevations in brain N-acetyl-aspartate levels, changes in cell and tissue morphology, and physical and behavioural deficits including mild akinesia and loss of normal motor coordination and balance. Parallel to this work was the development of a gene transfer approach to treat Canavan disease, involving Adeno-associated virus mediated delivery of aspartoacylase to the mammalian central nervous system. Gene transfer was undertaken in tremor rat mutants, and analysis was made of gene expression and function as well as the effect of aspartoacylase expression on improving the phenotypic deficits observed in mutant animals. Gene expression was observed at the RNA and protein level, with recombinant protein observed in cell soma and processes. Although not significant the data suggested a trend of decreased NAA levels after aspartoacylase transfer in comparison to animals injected with a vector encoding green fluorescent protein. Improvement was noted in the rotorod phenotype with mutant animals receiving aspartoacylase gene transfer performing better at tests of balance and coordinated locomotion than animals receiving a control vector. The study provided evidence that Adeno-associated virus mediated aspartoacylase gene transfer to the brain improves some of the deficits in tremor mutants, and supports the rationale of human gene transfer for Canavan disease. / Subscription resource available via Digital Dissertations only.
|
Page generated in 0.0657 seconds