• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 17
  • Tagged with
  • 56
  • 56
  • 56
  • 16
  • 16
  • 12
  • 11
  • 11
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Phenotypic characterisation of the tremor mutant and AAV mediated aspartoacylase gene transfer in the rat model of Canavan disease

McPhee, Scott William John January 2004 (has links)
The doctoral studies described in this thesis involve the phenotypic characterization of the tremor rat, an animal model of Canavan disease, and a proof of principle gene transfer study in this model. The phenotype of the tremor rat is examined at the genetic, molecular, cellular, neurochemical, physical and behavioural levels, and tremor mutants are described within the context of Canavan disease. Tremor mutants appear to share many phenotypes with both human patients and to the knock-out mouse model. The deletion of aspartoacylase results in a total loss of the capacity to metabolize N-acetyl-aspartate to acetate and aspartate in brain, leading to elevations in brain N-acetyl-aspartate levels, changes in cell and tissue morphology, and physical and behavioural deficits including mild akinesia and loss of normal motor coordination and balance. Parallel to this work was the development of a gene transfer approach to treat Canavan disease, involving Adeno-associated virus mediated delivery of aspartoacylase to the mammalian central nervous system. Gene transfer was undertaken in tremor rat mutants, and analysis was made of gene expression and function as well as the effect of aspartoacylase expression on improving the phenotypic deficits observed in mutant animals. Gene expression was observed at the RNA and protein level, with recombinant protein observed in cell soma and processes. Although not significant the data suggested a trend of decreased NAA levels after aspartoacylase transfer in comparison to animals injected with a vector encoding green fluorescent protein. Improvement was noted in the rotorod phenotype with mutant animals receiving aspartoacylase gene transfer performing better at tests of balance and coordinated locomotion than animals receiving a control vector. The study provided evidence that Adeno-associated virus mediated aspartoacylase gene transfer to the brain improves some of the deficits in tremor mutants, and supports the rationale of human gene transfer for Canavan disease. / Subscription resource available via Digital Dissertations only.
52

Phenotypic characterisation of the tremor mutant and AAV mediated aspartoacylase gene transfer in the rat model of Canavan disease

McPhee, Scott William John January 2004 (has links)
The doctoral studies described in this thesis involve the phenotypic characterization of the tremor rat, an animal model of Canavan disease, and a proof of principle gene transfer study in this model. The phenotype of the tremor rat is examined at the genetic, molecular, cellular, neurochemical, physical and behavioural levels, and tremor mutants are described within the context of Canavan disease. Tremor mutants appear to share many phenotypes with both human patients and to the knock-out mouse model. The deletion of aspartoacylase results in a total loss of the capacity to metabolize N-acetyl-aspartate to acetate and aspartate in brain, leading to elevations in brain N-acetyl-aspartate levels, changes in cell and tissue morphology, and physical and behavioural deficits including mild akinesia and loss of normal motor coordination and balance. Parallel to this work was the development of a gene transfer approach to treat Canavan disease, involving Adeno-associated virus mediated delivery of aspartoacylase to the mammalian central nervous system. Gene transfer was undertaken in tremor rat mutants, and analysis was made of gene expression and function as well as the effect of aspartoacylase expression on improving the phenotypic deficits observed in mutant animals. Gene expression was observed at the RNA and protein level, with recombinant protein observed in cell soma and processes. Although not significant the data suggested a trend of decreased NAA levels after aspartoacylase transfer in comparison to animals injected with a vector encoding green fluorescent protein. Improvement was noted in the rotorod phenotype with mutant animals receiving aspartoacylase gene transfer performing better at tests of balance and coordinated locomotion than animals receiving a control vector. The study provided evidence that Adeno-associated virus mediated aspartoacylase gene transfer to the brain improves some of the deficits in tremor mutants, and supports the rationale of human gene transfer for Canavan disease. / Subscription resource available via Digital Dissertations only.
53

Phenotypic characterisation of the tremor mutant and AAV mediated aspartoacylase gene transfer in the rat model of Canavan disease

McPhee, Scott William John January 2004 (has links)
The doctoral studies described in this thesis involve the phenotypic characterization of the tremor rat, an animal model of Canavan disease, and a proof of principle gene transfer study in this model. The phenotype of the tremor rat is examined at the genetic, molecular, cellular, neurochemical, physical and behavioural levels, and tremor mutants are described within the context of Canavan disease. Tremor mutants appear to share many phenotypes with both human patients and to the knock-out mouse model. The deletion of aspartoacylase results in a total loss of the capacity to metabolize N-acetyl-aspartate to acetate and aspartate in brain, leading to elevations in brain N-acetyl-aspartate levels, changes in cell and tissue morphology, and physical and behavioural deficits including mild akinesia and loss of normal motor coordination and balance. Parallel to this work was the development of a gene transfer approach to treat Canavan disease, involving Adeno-associated virus mediated delivery of aspartoacylase to the mammalian central nervous system. Gene transfer was undertaken in tremor rat mutants, and analysis was made of gene expression and function as well as the effect of aspartoacylase expression on improving the phenotypic deficits observed in mutant animals. Gene expression was observed at the RNA and protein level, with recombinant protein observed in cell soma and processes. Although not significant the data suggested a trend of decreased NAA levels after aspartoacylase transfer in comparison to animals injected with a vector encoding green fluorescent protein. Improvement was noted in the rotorod phenotype with mutant animals receiving aspartoacylase gene transfer performing better at tests of balance and coordinated locomotion than animals receiving a control vector. The study provided evidence that Adeno-associated virus mediated aspartoacylase gene transfer to the brain improves some of the deficits in tremor mutants, and supports the rationale of human gene transfer for Canavan disease. / Subscription resource available via Digital Dissertations only.
54

Molecular characterization of protease inhibitors from the Hessian fly, [Mayetiola destructor (Say)]

Maddur, Appajaiah Ashoka January 1900 (has links)
Doctor of Philosophy / Department of Entomology / Ming-Shun Chen / Gerald E. Wilde / Analysis of transcriptomes from salivary glands and midgut of the Hessian fly [Mayetiola destructor (Say)] identified a diverse set of cDNAs that were categorized into five groups, group I – V, based on their phylogenetic relationship. All five of these groups may encode putative protease inhibitors based on structural similarity with known proteins. The sequences of these putative proteins among different groups are highly diversified. However, sequence identity and structural analysis of the proteins revealed that all of them contained high cysteine residues that were completely conserved at their respective positions among these otherwise diversified proteins. Analysis of bacterial artificial chromosome (BAC) DNA for two groups, group I (11A6) and group II (14A4), indicated that group I might be a single copy gene or genes with low copy number whereas group II exists as multiple copies clustered within the Hessian fly genome. To test the inhibitory activity and specificity of these putative proteins, recombinant proteins were generated. Enzymatic analysis of the recombinant proteins against commercial and insect gut proteases demonstrated that recombinant proteins indeed are strong inhibitors of proteases with different specificities. Northern analysis of the representative members of five groups revealed that the group I-IV genes were expressed exclusively in the larval stage with variations among groups at different larval stages. The group V (11C4) genes were expressed in the late larval and pupal stage. Tissue specific gene expression analysis revealed that group I-IV genes were predominantly expressed in malpighian tubules whereas the group V genes were abundantly expressed in the salivary glands. Localization experiments with the antibody for representative members from group II (14A4) demonstrated that the protein was predominantly localized in the malpighian tubules and in low amounts in the midgut, suggesting that malpighian tubules are the primary tissue of 14A4 inhibitor synthesis. The overall results indicated that the Hessian fly contains a complex network of genes that code for protease inhibitors which regulate protease activities through different developmental stages of the insect.
55

A novel non-canonical WNT pathway regulates the asymmetric b cell division in Caenorhabditis elegans

Wu, Mingfu January 1900 (has links)
Doctor of Philosophy / Department of Biology / Michael A. Herman / The polarities of several cells that divide asymmetrically during C. elegans development are controlled by Wnt signaling. LIN-44/Wnt and LIN-17/Fz control the polarities of cells in the tail of developing C. elegans larvae, including the male-specific blast cell, B, which divides asymmetrically to generate a larger anterior daughter and a smaller posterior daughter. We determined that the canonical Wnt pathway components are not involved in the control of B cell polarity. However, POP-1/Tcf is involved and asymmetrically distributed to B daughter nuclei. Aspects of the B cell division are reminiscent of the divisions controlled by the planar cell polarity (PCP) pathway that has been described in both Drosophila and vertebrate systems. We identified C. elegans homologs of Wnt/PCP components and have determined that many of them appear to be involved in the regulation of B cell polarity and POP-1 asymmetric distribution to B daughter nuclei. Thus a non-canonical Wnt pathway, which is different from other Wnt pathways in C. elegans, but similar to the PCP pathways, appears to regulate B cell polarity. Molecular mechanisms of this PCP pathway were also investigated. We determined that LIN-17/Fz is asymmetrically distributed to the B cell cortex prior to, during, and after, division. Furthermore, the asymmetric localization of LIN-17::GFP is controlled by LIN-44/Wnt and MIG-5/Dsh. The cysteine rich domain (CRD), seven trans-membrane domain and KTXXXW motif of LIN-17 are required for LIN-17 to rescue lin-17, while only seven trans-membrane domains and KTXXXW motif are required for LIN-17 asymmetric localization. MIG-5::GFP asymmetrically localized to the B cell prior to and after division in a LIN-17/Fz dependent manner. We examined the functions of these MIG-5 domains. The DEP domain is required for MIG-5 membrane association, while the PDZ domain is responsible for different levels of MIG-5 in the B daughters. The DEP and PDZ domain are required to rescue B cell polarity defect of mig-5 males, while the DIX domain is not that important. In summary, a novel PCP-like pathway, in which LIN-17 and MIG-5 are asymmetrically localized, is conserved in C. elegans and involved in the regulation of B cell polarity.
56

Physiological and genetic analyses of post-anthesis heat tolerance in winter wheat (Triticum aestivum L.)

Vijayalakshmi, Kolluru January 1900 (has links)
Doctor of Philosophy / Agronomy / Allan K. Fritz / Bikram S. Gill / Gary M. Paulsen / Post-anthesis high temperature stress in wheat (Triticum aestivum L.) is a major cause of yield reduction. This process results in the loss of viable leaf area and a decrease in green leaf duration ultimately causing a yield loss. The objectives of this study were to (i) phenotype a recombinant inbred line population for heat tolerance traits, (ii) understand the genetic basis of heat tolerance by mapping quantitative trait loci (QTL) linked to yield-related traits under high temperature, (iii) model stay-green under high temperature stress and map the QTL linked to stay-green parameters, and (iv) validate the markers linked to QTL under field conditions. A filial6:7 (F6:7) recombinant inbred line (RIL) population was developed by crossing Ventnor, a heat-tolerant white winter wheat with Karl 92, a relatively heat susceptible hard red winter wheat. From 10 DAA to maturity, the treatments of optimum temperature or high temperature stress (30/25°C) were imposed on the RILs. The traits measured included grain filling duration (GFD), kernels per spike, thousand kernel weight (TKW), and grain filling rate (GFR). The stay-green traits calculated were: i) time between 75% and 25% green, ii) maximum rate of senescence, iii) time to maximum rate of senescence, and v) percent green at maximum senescence. Genetic characterization was performed using microsatellite (SSR), amplified fragment length polymorphism (AFLP) and a sequence tag site (STS) markers. GFD was positively correlated with TKW and negatively with GFR and maximum rate of senescence. Principle component analysis (PCA) showed kernels per spike, maximum rate of senescence, and TKW accounted for 98% of total variability among the genotypes for heat tolerance. The most significant QTL for yield traits co-localized with marker Xgwm296 for TKW, Xgwm356 for kernels per spike, and Xksum61 for GFR. The QTL for stay-green traits co-localized with markers P41/M62-107 on Chromosome 2A, Xbarc136 on Chromosome 2D, P58/MC84-146 on Chromosome 3B, P58/M77-343 on Chromosome 6A, and. P58/MC84-406 on Chromosome 6B. These results indicate that increased green leaf area duration has a positive effect on the grain yield under high temperature. Once the kernels per spike are established, GFD and TKW can be used as selection criteria for post-anthesis heat-tolerance.

Page generated in 0.0399 seconds