• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Size-fractionated phytoplankton biomass and primary production in the Southern Ocean

Balarin, Marianne G January 1999 (has links)
The factors controlling primary production in the Southern Ocean were investigated over two years during two cruises of the South African National Antarctic Program (SANAP). The first cruise was conducted to the region of the eastern Atlantic sector of the Southern Ocean during the collaborative Scandinavian/South African Antarctic expedition conducted in austral summer (DecemberIFebruary) 1997-1998. Production studies were conducted in the vicinity of the Marginal Ice Zone (MIZ), Interfrontal Zone (IFZ) and Antarctic Polar Front(APF). The second cruise was conducted during the Third Marion Island Oceanographic Survey (MIOS III) to the region of the Sub-Antarctic Prince Edward Islands in austral autumn (April/May) 1998. Size-fractionated production rates were estimated by 14C incorporation using standard JGOFS protocols. Oceanographic data from the first cruise suggest that the three regions can be divided into two distinct regimes. Stations occupied in the vicinity of the MIZ and the APF were characterised by a shallow mixed layer depth « 40m) while at the IFZ-stations, the mixed layer depth exceeded the 1% light depth. Microphytoplankton dominated integrated chlorophyll-a biomass in the MIZ (total chlorophyll a ranged between 15.4 and 41.3 mg Chi-a. m-2) and at the APF (range between 10.7 and 31.4 mg Chi-a. m-2) , comprising > 50% of total chlorophyll-a at all these stations. Xl Within the IFZ (2 stations), nanophytoplankton dominated total integrated Chl-a biomass (range between 5.6 and 8.8 mg Chi-a. m-2) comprising, on average, 36% of the total. Picophytoplankton comprised an average of 12% of the total Chl-a biomass (range between 3.1 and 5.9 mg Chi-a. m-2) in the MIZ, 36% in the IFZ (range between 6.4 and 7.8 mg Chl-a . m-2) and 20% in the vicinity of the APF (range between 6.8 and 10.6 mg Chi-a. m-2). Total integrated primary production ranged between 316 and 729 mg C . m-2. d-1 at stations occupied in the vicinity of the MIZ, and between 292 and 317 mg C . m·2• d-l within the IFZ. At stations occupied in the region of the APF, total integrated production ranged between 708 and 926 mg C . m-2• dol. The contribution of various size fractions to total productivity generally displayed the same pattern as integrated Chl-a biomass. Microphytoplankton formed the most important contributor to total production at stations occupied in the MIZ and at the APF. Within the IFZ, nanophytoplankton dominated total daily production. Nutrient data suggest that concentrations of macro nutrients within the upper water column were above the threshold where growth would be limited. Preliminary results showed that concentrations of iron (Fe) were highest in the southern region of the MIZ and in the vicinity of the APF. During the second cruise, conducted in the vicinity of the Sub-Antarctic Front (SAF) and in the upstream, inter-island and downstream regions of the Prince Edward Islands, there was evidence of fresh water run-off from the islands, (i.e. decreased salinities and increased concentrations of ammonia and nitrate). Oceanographic data collected at the various production stations indicated that the upper water column was well mixed throughout the survey. Total integrated biomass during the study ranged between 8.5 and 20.1 mg Chi-a. m-2• No distinct patterns in total Chl-a biomass were evident. Picophytoplankton dominated total biomass comprising> 45 % of total pigment at all stations. Nanophytoplankton were the second most important contributor to total integrated biomass. Generally xu microphytoplankton contributed < 10 % of total ChI-a. Total daily integrated production was highest (442.6 mg Chi-a. m-2) at the single station occupied in the vicinity of the SAF. Outside this region, total areal production was lower, ranging from 94.5 to 353.0 mg C . m-2. d-1. With the exception of the station occupied in the vicinity of the SAF, total productivity was dominated by nanophytoplankton, which comprised between 48 and 66% of the total. Concentrations of macronutrients did not appear to be limiting to phytoplankton growth. The absence of a phytoplankton bloom in the vicinity of the islands appears to have been related to water column stability, which was influenced by the prevailing oceanographic regime during the survey. Previous studies have shown that when the SAF lies in close proximity to the islands, advecting forces prevail, resulting in the islands functioning as a flow-through system. During this study, the SAF lay immediately north of the islands. As a consequence no water was trapped in the leeward side of the islands. The results of the two cruises suggest that phytoplankton production in the four systems investigated: the Marginal Ice Zone (MIZ), Antarctic Polar Front (APF), Inter Frontal Zone (IFZ) and Prince Edward Islands (PEl), was largely controlled by water column stability. It is probable that the availability of iron, particularly in the region of the MIZ and APF, may have further contributed to the elevated production recorded in these two regions.
2

Quantitative polysaccharide analysis of lignocellulosic biomass

Fenske, John J. 17 June 1994 (has links)
Lignocellulosic biomass is a potential source of fermentable sugars such as glucose. Enzymatic hydrolysis of cellulose is a viable method of solubilizing the glucose from biomass, but the cellulose fraction of native lignocellulosic material is shielded from enzymatic attack by the lignin-hemicellulose matrix surrounding it. Pretreating lignocellulosic biomass with dilute sulfuric acid at high temperatures solubilizes hemicellulose, rendering the cellulose fraction more susceptible to enzymatic hydrolysis. Evaluation of dilute-acid, high-temperature pretreatments depends on polysaccharide analysis of the two fractions resulting from a pretreatment, prehydrolyzed solids(PHS) and prehydrolyzate liquid(PH). The polysaccharide analysis is based on a method described by the National Renewable Energy Laboratory and involves a two-stage sulfuric acid hydrolysis followed by HPLC quantification using ion-moderated partition chromatography and refractive index detection. The subject of this thesis is identifying and quantifying the sources of error associated with the polysaccharide analysis and the error associated with the evaluation of the effects of pretreatment on the polysaccharide fractions of switchgrass and poplar. This was addressed by conducting replicate polysaccharide analyses on single samples of native biomass, PHS, and PH. The variability associated with these measurements was compared to the variability associated with replicate analyses of identically pretreated biomass. It was found that the use of sugar standards to correct for sugar destroyed during the analysis adds error and most likely overestimates the amount of sugar from biomass actually destroyed. It is evident that assuming a volume after neutralization of the hydrolyzed biomass sample is more reproducible than measuring the volume. When using a batch-type reactor and the temperature and acid parameters used in this study,140°C-180°C/ 0.6-1.2 % sulfuric acid (w/w), it is evident that the major source of error in evaluating pretreatment conditions is the pretreatment itself, not the analysis. / Graduation date: 1995
3

Analýza lokálního trhu biomasy z pohledu vybrané firmy / Analysis of the local biomass from the point of view of a chosen enterprise

DLABOLOVÁ, Denisa January 2012 (has links)
This thesis deals with the analysis of the local market in terms of biomass and Less Energy. There is examined the potential of logging residues from the selected area is examined further traffic limit for supplying chips. There are used Porter model analysis.
4

Parâmetros industriais para produção de Pleurotus ostreatus / Industrial parameters for production of Pleurotus ostreatus

Silva, Amanda Souza Calixto da [UNESP] 30 March 2016 (has links)
Submitted by AMANDA SOUZA CALIXTO DA SILVA null (amanda.calixto2@gmail.com) on 2016-04-21T01:44:03Z No. of bitstreams: 1 dissertação_amanda_final _com logo_3.pdf: 2555705 bytes, checksum: 4071ad8030f63db30d1fed65bffab925 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-04-26T19:11:34Z (GMT) No. of bitstreams: 1 silva_asc_me_rcla.pdf: 2555705 bytes, checksum: 4071ad8030f63db30d1fed65bffab925 (MD5) / Made available in DSpace on 2016-04-26T19:11:34Z (GMT). No. of bitstreams: 1 silva_asc_me_rcla.pdf: 2555705 bytes, checksum: 4071ad8030f63db30d1fed65bffab925 (MD5) Previous issue date: 2016-03-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Os cogumelos são definidos como macrofungos que tem papel essencial na decomposição da matéria orgânica. Além de sua função ecológica os cogumelos são apontados como alimentos de valor nutricional e medicinal. Estes fatores têm estimulado a produção e o comércio de cogumelos, sobretudo de Pleurotus ostreatus por sua facilidade de cultivo e alta produtividade. Sob este contexto, são necessárias pesquisas que avaliem os fatores que interferem diretamente na produtividade. Frente ao exposto, o presente trabalho objetivou avaliar e comparar o efeito dos fatores ambientais e nutricionais sobre a produtividade e resposta à indução dos primórdios de duas linhagens de P. ostreatus cultivadas em ambientes protegidos. Os resultados obtidos mostraram que os substratos cultivo apresentaram alta heterogeneidade. A caracterização das diferentes formulações indicaram mudanças sutis sobre a relação C/N do substrato, tendo em vista a C/N sofre diminuição ao final do processo devido à degradação da matéria orgânica. Quanto à produtividade registrou-se diferenças entre linhagens e formulações. A formulação F1, apresentou produtividade de 14,65% e eficiência biológica de 72,58 mediante inoculação da linhagem SB, à diferença do observado na linhagem MB que apresentou produtividade de 17,40% e eficiência biológica de 86,20%. Diferenças foram também registradas na formulação B, na qual obteve-se produtividade de 13,79% e eficiência biológica de 79,91% referente a linhagem SB e produtividade de 13,42% e eficiência biológica de 41,39% referente a linhagem MB. Após a colheita, análises bromatológicas foram realizadas com o substrato exaurido. Os resultados revelaram teores de proteína total de 6,82%, 34,13% de cinzas, 1,41% de lipídeos totais e 84,12% de umidade, para a formulação A e 5,73% de proteína total, 22,93% de cinzas, 2,53% de lipídeos totais e 71,85% de umidade para formulação B. Concluiu-se que a satisfatória produtividade de P. ostreatus está diretamente ligada a qualidade de substrato. Para tanto deve-se estabelecer e parâmetros de qualidade no preparo do composto. Quanto ao substrato exaurido sua composição nutricional avaliada indicou a possibilidade de sua utilização em formulações de ração para ruminantes como fonte de proteína de qualidade. / The mushrooms are defined as Macrofungi that play an essential role in the decomposition of organic matter. Besides to their ecological function, mushrooms are well-known to have nutritional and medicinal value as foods. These factors have been boosting the outputs and trading of mushrooms, especially, Pleurotus ostreatus, due to its facility of cultivation and high productivity. In this context, research is needed in order to evaluate the factors that can directly interfere in their productivity. In face to this issue, this work aimed to evaluate and to compare the effects of environmental and nutritional factors in their productivity. In addition, to assess the responses of the induction of the primordial two strains of P. ostreatus cultivated in protected environments. The obtained results showed that the growing substrates displayed high heterogeneity. The characterization of different formulations showed subtle changes regarded to the substrate C/N, knowing that the C/N suffer a decrease at the end of the process due to the degradation of organic matter. There were registered productivity differences among strains and formulations. The formulation A showed 14.65% of productivity and 72.58% of biological efficiency by inoculation of the SB strain. Differently, the strain MB showed 17.40% of productivity and 86.20% of biological efficiency. Differences were noticed in the strain B as well, in which the productivity was 13.79% and biological efficiency was 79.91% regarded to SB strain and productivity of 13.42% and biological efficiency of 41.39% regarded to MB. After the harvest, bromatological analyzes were made with the depleted substrate. The results showed contents of 6.82% of total protein, 34.12% of ashes, 1.41% of total lipids and 84.12% of humidity to the formulation A and 5.37% of total protein, 22.93% of ashes, 2.53% of total lipids and 71.85% of humidity to the formulation B. In conclusion, the satisfactory productivity of P. ostreatus is straightforward related to the quality of the substrate. Therefore, quality parameters should be established to the preparation of the compost. The evaluated nutritional composition of the depleted substrate pointed out the possibility to be used as an item in the formulation of ruminant feed as a high quality source protein.

Page generated in 0.0525 seconds