• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 9
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 9
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Burnout, NO, Flame Temperature, and Radiant Intensity from Oxygen-Enriched Combustion of a Hardwood Biomass

Thornock, Joshua David 01 December 2013 (has links)
Increasing concern for energy sustainability has created motivation for the combustion of renewable, CO2 neutral fuels. Biomass co-firing with coal provides a means of utilizing the scaled efficiencies of coal with the lower supply availability of biomass. One of the challenges of co-firing is the burnout of biomass particles which are typically larger than coal but must be oxidized in the same residence time. Larger biomass particles also can increase the length of the radiative region and alter heat flux profiles. As a result, oxygen injection is being investigated as a means of improving biomass combustion performance.An Air Liquide designed burner was used to investigate the impact of oxygen enrichment on biomass combustion using two size distributions of ground wood pellets (fine grind 220 µm and medium grind 500 µm mass mean diameter). Flame images were obtained with a calibrated RGB digital camera allowing a calculation of visible radiative heat flux. Ash samples and exhaust NO were collected for a matrix of operating conditions with varying injection strategies. The results showed that oxygen can be both beneficial and detrimental to the flame length depending on the momentum of the oxygen jet. Oxygen injection was found to improve carbon burnout, particularly in the larger wood particles. Low flow rates of oxygen enrichment (2 to 6 kg/hr) also produced a modest increase in NO formation up to 30%. The results showed medium grind ~500 µm mass mean diameter particle combustion could improve LOI from 30% to 15% with an oxygen flow rate of 8 kg/hr. Flame images showed low flow rates of O2 (2 kg/hr) in the center of the burner with the fine particles produced a dual flame, one flame surrounding the center oxygen jet and a second flame between the volatiles and secondary air. The flame surrounding the center oxygen jet produced a very high intensity and temperature (2100 K). This center flame can be used to help stabilize the flame, increase devolatilization rates, and potentially improve the trade-off between NO and burnout.
22

Particulate and gaseous emissions from residential biomass combustion

Boman, Christoffer January 2005 (has links)
<p>Biomass is considered to be a sustainable energy source with significant potentials for replacing electricity and fossil fuels, not at least in the residential sector. However, present wood combustion is a major source of ambient concentrations of hydrocarbons (e.g. VOC and PAH) and particulate matter (PM) and exposure to these pollutants have been associated with adverse health effects. Increased focus on combustion related particulate emissions has been seen concerning the formation, characteristics and implications to human health. Upgraded biomass fuels (e.g. pellets) provide possibilities of more controlled and optimized combustion with less emission of products of incomplete combustion (PIC´s). For air quality and health impact assessments, regulatory standards and evaluations concerning residential biomass combustion, there is still a need for detailed emission characterization and quantification when using different fuels and combustion techniques.</p><p>This thesis summarizes the results from seven different papers. The overall objective was to carefully and systematically study the emissions from residential biomass combustion with respect to: i) experimental characterization and quantification, ii) influences of fuel, appliance and operational variables and iii) aspects of ash and trace element transformations and aerosol formation. Special concern in the work was on sampling, quantification and characterization of particulate emissions using different appliances, fuels and operating procedures.</p><p>An initial review of health effects showed epidemiological evidence of potential adverse effect from wood smoke exposure. A robust whole flow dilution sampling set-up for residential biomass appliances was then designed, constructed and evaluated, and subsequently used in the following emission studies. Extensive quantifications and characterizations of particulate and gases emissions were performed for residential wood and pellet appliances. Emission factor ranges for different stoves were determined with variations in fuel, appliance and operational properties. The emissions of PIC´s as well as PM<sub>tot</sub> from wood combustion were in general shown to be considerably higher compared to pellets combustion. PAH<sub>tot</sub> emissions were determined in the range of 1300-220000 µg/MJ for wood stoves and 2-300 µg/MJ for pellet stoves with phenantrene, fluoranthene and pyrene generally found as major PAH´s. The PM emissions from present residential appliances was found to consist of significant but varying fractions of PIC´s, with emissions in the range 35-350 mg/MJ for wood stoves compared to 15-45 mg/MJ for pellet stoves. Accordingly, the use of up-graded biomass fuels, combusted under continuous and controlled conditions give advantageous combustion conditions compared to traditional batch wise firing of wood logs. The importance of high temperature in well mixed isothermal conditions was further illustrated during pellets combustion to obtain complete combustion with almost a total depletion of PIC´s. Fine (100-300 nm) particles dominated in all studied cases the PM with 80-95% as PM1. Beside varying fractions of carbonaceous material, the fine PM consisted of inorganic volatilized ash elements, mainly found as KCl, K<sub>3</sub>Na(SO<sub>4</sub>)<sub>2</sub> and K<sub>2</sub>SO<sub>4</sub> with mass concentrations at 15-20 mg/MJ during complete combustion. The importance of the behavior of alkali elements for the ash transformation and fine particle formation processes was further shown, since the stability, distributions and compositions also directly control the degree of volatilization. In addition to the alkali metals, zinc was found as an important element in fine particles from residential biomass combustion. Finally, the behaviour of volatile trace elements, e.g. Zn and Cd, during pellets production and combustion were studied. A significant enrichment in the pellet fuel during the drying process was determined. The magnitude and importance of the enrichment was, however, relative small and some alternative measures for prevention were also suggested.</p>
23

Particulate and gaseous emissions from residential biomass combustion

Boman, Christoffer January 2005 (has links)
Biomass is considered to be a sustainable energy source with significant potentials for replacing electricity and fossil fuels, not at least in the residential sector. However, present wood combustion is a major source of ambient concentrations of hydrocarbons (e.g. VOC and PAH) and particulate matter (PM) and exposure to these pollutants have been associated with adverse health effects. Increased focus on combustion related particulate emissions has been seen concerning the formation, characteristics and implications to human health. Upgraded biomass fuels (e.g. pellets) provide possibilities of more controlled and optimized combustion with less emission of products of incomplete combustion (PIC´s). For air quality and health impact assessments, regulatory standards and evaluations concerning residential biomass combustion, there is still a need for detailed emission characterization and quantification when using different fuels and combustion techniques. This thesis summarizes the results from seven different papers. The overall objective was to carefully and systematically study the emissions from residential biomass combustion with respect to: i) experimental characterization and quantification, ii) influences of fuel, appliance and operational variables and iii) aspects of ash and trace element transformations and aerosol formation. Special concern in the work was on sampling, quantification and characterization of particulate emissions using different appliances, fuels and operating procedures. An initial review of health effects showed epidemiological evidence of potential adverse effect from wood smoke exposure. A robust whole flow dilution sampling set-up for residential biomass appliances was then designed, constructed and evaluated, and subsequently used in the following emission studies. Extensive quantifications and characterizations of particulate and gases emissions were performed for residential wood and pellet appliances. Emission factor ranges for different stoves were determined with variations in fuel, appliance and operational properties. The emissions of PIC´s as well as PMtot from wood combustion were in general shown to be considerably higher compared to pellets combustion. PAHtot emissions were determined in the range of 1300-220000 µg/MJ for wood stoves and 2-300 µg/MJ for pellet stoves with phenantrene, fluoranthene and pyrene generally found as major PAH´s. The PM emissions from present residential appliances was found to consist of significant but varying fractions of PIC´s, with emissions in the range 35-350 mg/MJ for wood stoves compared to 15-45 mg/MJ for pellet stoves. Accordingly, the use of up-graded biomass fuels, combusted under continuous and controlled conditions give advantageous combustion conditions compared to traditional batch wise firing of wood logs. The importance of high temperature in well mixed isothermal conditions was further illustrated during pellets combustion to obtain complete combustion with almost a total depletion of PIC´s. Fine (100-300 nm) particles dominated in all studied cases the PM with 80-95% as PM1. Beside varying fractions of carbonaceous material, the fine PM consisted of inorganic volatilized ash elements, mainly found as KCl, K3Na(SO4)2 and K2SO4 with mass concentrations at 15-20 mg/MJ during complete combustion. The importance of the behavior of alkali elements for the ash transformation and fine particle formation processes was further shown, since the stability, distributions and compositions also directly control the degree of volatilization. In addition to the alkali metals, zinc was found as an important element in fine particles from residential biomass combustion. Finally, the behaviour of volatile trace elements, e.g. Zn and Cd, during pellets production and combustion were studied. A significant enrichment in the pellet fuel during the drying process was determined. The magnitude and importance of the enrichment was, however, relative small and some alternative measures for prevention were also suggested.
24

Characterization and productive reuse of high carbon content coal and biomass energy combustion residuals

Yeboah, Nii Narh Nortey 22 May 2014 (has links)
In recent decades, advances in low NOₓ coal combustion and increasingly strict CO₂ reduction mandates have changed power plant boiler operations quite significantly. As a result of these necessary efforts, the characteristics of fly ash generated at many power plants have also changed. In particular, increases in unburned carbon content have been observed with detrimental implications on the utility of these fly ashes in concrete applications. Over the same time period, the combustion of biomass for energy generation has received increased attention due to the potential benefits of reducing CO₂ emissions and improved sustainability when compared to fossil fuel combustion. Biomass is directly burned, gasified, or co-fired with coal to achieve this goal. Currently, close to 120 million metric tons of coal combustion by products are produced in the U.S. annually. As with coal combustion, production of energy from biomass combustion/gasification results in significant by-product generation that must either be productively reused or geologically disposed. While much research effort has been devoted to understanding the properties and potential productive reuse alternatives for coal combustion residuals, relatively little work has been done on the by-products of biomass combustion. This study investigated the properties and engineering behavior of sixteen ash samples that were produced in eleven different power plants. Specifically, three high carbon content Class F fly ashes, eight coal and biomass co-fired ashes, three pure biomass ash samples, and two high quality, low carbon content ash samples, one of which is commercially marketed (for reference) were chosen. The various ash samples were characterized by means of: electron microscopy; laser diffraction and dry sieve particle size analysis; loss on ignition and total organic carbon analysis; specific surface area analysis; as well as x-ray fluorescence and x-ray diffraction. The ash samples were also investigated for their potential engineering application in the fired clay brick industry, as low-cost adsorptive agents, and in alkali activated geopolymer synthesis for geotechnical and geoenvironmental applications. Results from physical and chemical characterization of the ash samples show no significant differences between pure coal ash and coal co-fired with biomass ash samples from the same power plant. However, there are significant morphological, chemical, and mineralogical differences between coal ash and pure biomass ash. Unlike pure coal ash, biomass ash is not composed primarily of aluminosilicate glass cenospheres but rather consists mainly of charred, fibrous woody remnants with elevated calcite content as compared to coal ash. Bench scale fired bricks produced by partial replacement of clay material with high carbon coal ash, co-fired ash, and pure biomass ash, respectively, was successful. Physical properties of a number of the mix designs exceeded the highest ASTM weathering grade requirements. As sorptive agents, high carbon concentrates from coal and co-fired ash samples, along with all the biomass ash samples, showed significant uptake of lead. The unaltered as- received ash samples (i.e. no acid or steam activation) showed only moderate arsenic (V) and selenium (VI) sorption capacity. Finally, solidification/stabilization by geopolymerization of high carbon content, co-fired ash with as little as 3 molar NaOH in the activator solution was successful, possibly paving the way for various geotechnical and geoenvironmental applications in ground improvement and soil/ash-pond stabilization.
25

Caracterização físico-química das cinzas da palha de cana-de-açúcar através de análises térmicas simultâneas (STA) / Physico-chemical characterization of sugar cane straw ashes by means of simultaneous thermal analysis (STA)

Franco Jacome, Diego Luis, 1986- 24 August 2018 (has links)
Orientador: Waldir Antonio Bizzo / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-24T20:40:56Z (GMT). No. of bitstreams: 1 FrancoJacome_DiegoLuis_M.pdf: 6974773 bytes, checksum: 66b68efde995c3ab7c55a3d28e15cc19 (MD5) Previous issue date: 2014 / Resumo: A cadeia produtiva da cana-de-açúcar tem focado grande interesse no aproveitamento integral dos seus principais subprodutos: a palha e o bagaço (sendo a palha constituída das porções foliares e ponteiras da cana-de-açúcar). Isto tem sido feito através da mudança das rotas produtivas, onde o bagaço será utilizado para a produção de etanol de segunda geração e a palha como substituta do bagaço nas caldeiras de geração de vapor. Atualmente a palha não está consolidada como combustível e, portanto, seu comportamento nos geradores de vapor permanece desconhecido. Sabendo que as incrustações devido à fusão das cinzas durante a combustão de combustíveis sólidos representa um dos maiores problemas na operação dos equipamentos de geração de vapor, neste trabalho, foi caracterizada a palha de cana como combustível a fim de prever seu possível comportamento em caldeiras industriais. Amostras de palha de cana-de-açúcar foram recolhidas em duas condições: diretamente da planta e recolhida no solo após a colheita mecanizada. Foram estudados e analisados os comportamentos das cinzas da palha integral e seus componentes (pontas, folhas verdes e folhas secas), por meio das técnicas de análise térmica simultânea (STA) e da espectrometria de energia dispersiva (EDS). Desta forma, foram identificadas temperaturas de evaporação e a composição dos principais constituintes voláteis das cinzas, representados por uma reação endotérmica com perda de massa. Igualmente, a temperatura de fusão foi detectada como reação endotérmica sem envolver perdas de massa. As análises apresentaram composição e comportamentos diferentes para cada um dos componentes da palha baseados principalmente no teor de metais álcali, cloro e das temperaturas de preparação das cinzas prévias às análises. Neste sentido, as porções correspondentes às pontas e folha verdes da cana-de-açúcar, apresentaram impactos relacionados com incrustações (fouling/slagging) superiores às de folhas secas e palha integral. Baseados nos resultados obtidos a palha de cana-de-açúcar perfila-se como uma possível biomassa substituta ao bagaço nas caldeiras de geração industriais / Abstract: The sugarcane supply chain has lately placed great interest on the comprehensive use of its main by-products: straw and bagasse (the straw constituted by leaves and tops). By changing the production routes, sugarcane bagasse will be used as an energy source for the production of second generation ethanol and straw will substitute bagasse in steam generators. However, sugarcane straw is not currently used as fuel; therefore, its behavior in industrial boilers remains unknown. Slagging and fouling depositions due to fly ash melting within the boiler during combustion of solid fuel represents one of the most significant issues in the operation and maintenance of steam generation equipment. The main objective of this work was to characterize sugarcane straw as a fuel in order to predict its performance in industrial boilers. Samples of straw were collected in two different conditions: directly from the plant and off the field after mechanized harvest. The behavior of the ashes produced at different temperatures (575°C, 785°C and 985/950/850°C) from the integral sugarcane straw and its individual components (tops, dry leaves and green leaves) were analyzed by simultaneous thermal analysis (STA) and energy dispersive spectroscopy (EDS). Evaporation temperature and composition of the main volatile constituents of ashes formed, represented by an endothermic reaction involving changes in mass were identified. Also, fusion temperature was determined to be an endothermic reaction without mass loss. Results showed different elemental compositions and behaviors of ashes for each constituent of sugarcane straw, mainly based on alkali and chlorine percentage, and ashing temperature. In this regard, the fractions corresponding to sugarcane tops and green leaves showed major impacts on slagging and fouling depositions compared to dry leaves and raw straw fraction possibly due to its high levels of potassium and chlorine. Based on the results obtained from this research, sugarcane straw is profiled as an excellent substitute biomass for bagasse in industrial steam generation boilers, instead of being burned as a pre-harvest technique / Mestrado / Termica e Fluidos / Mestre em Engenharia Mecânica
26

Systematics of biomass burning aerosol transport over Southern Africa

Mafusire, Getrude 26 June 2014 (has links)
M.Phil. (Energy Studies) / Southern Africa is a major source of regional aerosols and trace gases from biomass burning, and this creates a need for experimental validation and systematics of the magnitude and frequency of aerosol transport episodes affecting the atmosphere of the region. This study links surface measurements of biomass burning atmospheric aerosols and trace gases with air mass trajectory analysis to determine transport pathways for periods of high and low concentrations. The hypothesis of this study is that from chemical signatures of trace gases and aerosols, as well as trajectory analyses, it is possible to identify sources of these emissions from industrial, traffic, marine and biomass burning activities. Consequently, frequencies, durations, intensities and seasonal variations of trace gases can be established. The study aims to interpret the long-term atmospheric monitoring record from a remote monitoring station at Botsalano (North West Province, South Africa) to determine the origin, frequencies, durations, intensities and seasonal occurrences of aerosol/haze episodes influencing the atmosphere of southern Africa. A suite of trace gas analysers and a Differential Mobility Particle Sizer (DMPS®) were used to measure ground level trace gas and aerosol quantities. MATLAB® scripts were used in performing quality assurance and processing to provide a working set of data from which different fire periods could be selected. Fire signatures, based on excess CO above average tropospheric levels and episodes of enhanced particulate matter concentrations in the 10 to 200 nm range, were identified using MATLAB® scripts and Excel®. Altogether 36 plumes were accepted as biomass burning plumes. Twenty-nine fire plumes had weak signals with excess CO ratios ranging between 0.07 and 0.32; seven plumes had strong signals ranging between 0.41 and 0.64. The occurrence of identified biomass burning plumes was high in the dry season from May to October (83%) and low (17%) during the wet season from November to April. Four pathways were identified for the long-range transportation of biomass burning aerosols to the site: easterly, south-westerly, re-circulation and northerly modes, with occurrence frequencies of 39%, 31%, 22% and 8%, respectively. Anti-cyclonic circulation was observed over southern Africa and was evident in the re-circulation and Indian Ocean slow modes. CO and Aitken-mode aerosol number intensities were generally larger for fire emissions arriving in the easterly and south-westerly air masses when compared with those arriving in re-circulation and northerly air masses. Easterly and south-westerly flows were dominated by Aitken-mode aerosol, whereas accumulation mode particles dominated in the re-circulation and northerly modes. Consequently, easterly and south-westerly flows transported emissions from young/fresh fire plumes, with source regions probably close to Botsalano. Re-circulation and northerly flows were responsible for transport of rather aged plumes from more distant regional fires. Based on forward trajectories, this study revealed that the 2006/2007 measurement period exhibited transport features of a La Niña ENSO during which transport of biomass v burning aerosols towards the south in the Indian Ocean slow and Indian Ocean fast modes was most frequent. This study is significant in that it complements earlier studies of regional aerosol transport over the sub-continent and adds to the understanding of the regional scale generation and transport of trace substances through the atmosphere. Furthermore, the study combines a technique for identifying enhanced CO concentrations as a unique identifier of large scale biomass combustion events with the use of the Aitken-mode particle number densities and size distributions. This technique reveals aspects of aerosol growth dynamics through the changing size distributions, thereby adding fresh insights normally not available through conventional particle volume/mass concentrations measurements.
27

Packed Bed Gasification-Combustion In Biomass Based Domestic Stoves And Combustion Systems

Varunkumar, S 02 1900 (has links) (PDF)
This thesis constitutes fundamental experimental and computational investigations on gasification and combustion in a packed bed of biomass. Packed bed gasification-combustion in counter-current mode is used in two applications -(1) Gasifier stove in reverse downdraft mode (or equivalently, top-lit updraft mode) that constitutes the idea behind efficient and clean burning domestic stoves. (2) Combustion-on moving grate for boiler application, studied widely in Europe. While a large part of the present study is around domestic stoves, a crucial part of the study aims to address the second application as an extension of the approach taken in the first part to clarify conflicting conclusions of earlier studies and explain the aero-thermochemical behavior over the entire range of superficial velocities, V s (this is velocity of air through the empty cross section of the reactor). Operational differences between the two applications lie in the range of superficial velocity -3.5 to 6 cm/s for domestic stoves and 15 to 30 cm/s for grate combustion. Lower values of Vs are chosen for domestic stoves to limit the particulate emissions; higher values of V s for combustion-on-grate to maximize the conversion rate. Present work deals with a fan based gasifier stove, Oorja, built by BP, India (currently transferred to FEPL, Pune) and disseminated to over 400,000 households between 2005 and 2009. The technology was developed at CGPL, IISc and transferred to BP for commercialization. Work reported in this thesis was started to resolve issues of higher CO emissions in char mode operation and occasional smoking during transition from flaming to char mode. The contribution of the thesis is split into two parts. (a) Use of the principles of gasification to improve the performance of the stoves to the highest possible level, balancing between efficiency and ash fusion issues for domestic and industrial applications and (b) fundamental studies to unravel the flame structure in the two-phase gasification-combustion process over the entire range of Vs. Improving the stove performance It has been known that in most free-convection based stoves, like three stone fire and others developed over the last two decades, the amount of energy extracted from the stove by a cooking pot, usually measured as water boiling efficiency, is between 15 to 35 % with CO emissions of more than 1.5 g/MJ. Oorja stove had demonstrated water boiling efficiency of 50 % and CO emissions of 0.75 g/MJ. Operational issues noticed in the field provided an opportunity to further improve the performance by conducting detailed thermo-chemical studies. Towards this, the components of water boiling efficiency in different phases and from different modes of heat transfer were determined. Optimizing the ratio of air flow rate between combustion air from top and gasification air through the grate (denoted by R) was the key to improving the performance. The maximum water boiling efficiency obtained was 62% with 0.53 g/MJ CO for a 320 mm diameter vessel; under these conditions, the first phase, termed flaming mode, involving pyrolysis-gasification-gas phase combustion contributed 45% to the total efficiency and 0.4 g/MJ CO at R = 4.8 and the second phase, termed char mode, involving char surface oxidation-gasification-gas phase combustion contributed 17% and 0.13 g/MJ CO at R = 1.9. Under optimal air flow conditions, efficiency depends on the size of the vessel used; reactive flow calculations were performed with fast chemistry (using mixture fraction approach) in a zone that includes the free space of the combustion chamber and the vessel to obtain the heat transfer efficiency and bring out the effect of vessel size. Experiments aimed at evaluating the performance of the stove on either side of stoichiometry, revealed that while the stove could be operated on the rich side, it was not possible to operate it on the lean side -it was always tending towards the stoichiometric point with enhanced power. Computational studies showed that increased air flow from the top caused enhanced recirculation around the fuel bed bringing more oxygen that reacted closer to the surface and transferred additional heat enhancing the pyrolysis rate, explaining the observed shift towards stoichiometry. An examination of literature showed that the energy balance for stoves had long remained unexplained (unaccounted losses in stoves were up to 40 %). Using the different components of efficiency obtained from experiments and computations, a heat balance was established to within 5%. This vast improvement in the heat balance is due to the fact that the unaccounted loss in the earlier estimates was essentially due to poor combustion, but was not so recognized. The very significant increase in combustion efficiency in this class of stoves allowed the possibility of estimating other components reasonably accurately. This is a direct consequence of the two stage gasification-combustion process yielding steady flow of gases which contain 80% (gasification efficiency) of the input energy enabling near-stoichiometric combustion with the help of controlled supply of combustion air. Fundamental studies Experiments with wood chips (615 kg/m3) and pellets (1260 kg/m3) showed that particle density has no effect on single particle and packed bed combustion in flaming mode beyond the role played through the surface energy balance (involving the product of fuel density and propagation rate, ˙r). Same is true for single char particles. A transport controlled combustion model taking into account the ash build up over the char surface confirmed this behaviour and showed that the phenomenon follows d2 law, where d is the equivalent diameter of the fuel particle, consistent with the experimental results. But packed bed of char particles showed distinct dependence on particle density. Differences were traced to poor thermal environment faced by low density wood char pieces compared to pellet char leading to variations in the volumetric heat release rate. A composite picture of the operational behaviour of the packed bed flame propagation was obtained from the measurements of exit gas composition, bed temperature, temperature of gas phase and condensed phase surface using 100 µm thermocouples, O 2 drop across the flame front using lambda sensor as a function of Vs. The packed bed studies were conducted in insulated steel and glass reactors. These studies clearly showed distinctive regimes in the bed behavior. In the first regime from Vs = 3 to 17 cm/s, (a) the propagation rate increases with Vs, (b) the fractions of CO, H2 are at least 10%, CH4 drops from 3 to 1%, (c) the oxygen fraction is near zero, (d) the gas phase temperature in the bed is constant at about 1600 K, (e) the condensed phase surface temperature increase from 850 K to 1600 K and (f) oxygen fraction drops from 0.21 to 0.0 within a single particle depth and coincides with the gas phase ignition. The inferences drawn from these data are that (i) the process is diffuusion controlled (ii) the bed operates in fuel rich mode, (iii) char participates only in reduction reactions. In the second domain from V s = 17 cm/s up to about 50 cm/s, (a) the propagation rate is nearly constant (b) the mass fractions of CO and H2 drops to less than 5%, CH4 decreases further, (c) oxygen fraction remains near zero, (d) CO 2 increases, (e) gas phase and surface temperatures are nearly equal and increase from 1600 K to 2200 K and match with the equilibrium temperature at that equivalence ratio, (f) oxygen fraction drops from 0.21 to 0 in one particle depth like in the first regime indicating diffuusion limitedness in this regime as well, (g) unlike in the first regime, volatiles from biomass are convected up to the next layer suppressing a local flame and char oxidation dominates. Beyond Vs = 50 cm/s, the propagation ceased to occur. The precise value of the extinction V s depended on the rate of increase of Vs in this range. A faster change initiated the extinction earlier. Observations showed that extinction began at some location around the periphery and spread laterally. Extinction at one layer was adequate to complete the extinction process. To explain the observed behaviour a simple zero-dimensional model tracking the heating of a fresh biomass particle upstream of the propagating flame front because of radiative heat transfer was set up. This equation was coupled with the equation for single particle flaming combustion to explain the behavior in the first regime. In order to explain the observed flattening of propagation rate in the second regime, it was found essential to account for the effect of the ash layer building on the oxidizing char particle and the temperature dependence of ash emissivity, on the radiative heat transfer to fresh biomass. The results of the model coupled with the experimental data from all sources on a corrected propagation rate vs. V s showed a universal behaviour that is considered a very important recognition of the packed bed propagation behaviour. Combining theory and experiments was essential to explain the extinction. The features are: (a) the presence of ash layer over the surface is shown to be responsible for maintaining a steady char conversion in a single particle at low stream speeds, (b) the feature that the ash layer would be blown away at stream velocities of 2.5 to 3 m/s in a single particle combustion, (c) with V s close to 50 cm/s, local velocities of air flow through the bed can reach 2 to 3 m/s, this value being sensitive to the bed arrangement (with slight shifting or settling of one particle leading to increase of the local velocity at the periphery). Thus, the high local speeds of flow through the bed (more than 2 m/s) was considered responsible for removal of ash layer such that radiation losses would be dominant and cause local extinction of the reaction front at the char surface. Thus, this study has led to a comprehensive understanding of the gasification-combustion behavior of packed bed in stoves and on grates. It has also led to the evolution of parameters for obtaining high efficiency and low emissions (HELE) from stoves -both domestic and industrial. Most interestingly, it has resulted in recognition of an universal behavior of flame propagation rate through packed bed of biomass.
28

Teplotní pole v tuhém palivu / Temperature field in solid fuel

Ptáček, Pavel January 2020 (has links)
The diploma thesis deals with a temperature field in a solid fuel during the combustion process. At the beginning of this thesis, research of available literature was conducted to obtain information about the composition of wood, properties affecting the combustion process, and the basics of heat transfer. Afterward, the temperature profiles of the samples were recorded during the measurement in the observation furnace. The temperature profiles of samples of six different sizes which were made of spruce and beech wood were subsequently evaluated and compared. Based on experimentally obtained data, a mathematical model was created in the OpenModellica software. Finally, the results of the mathematical model were compared with experimentally obtained data and appropriate conclusions were deduced.
29

Stanovení organických sloučenin v dehtu po spalování a zplyňování biomasy / Determination of organic substances in tar formed after biomass combustion and gasification

Hájek, Radek January 2015 (has links)
Biomass pyrolysis and gasification techniques count among basic technological procedures for its use as a source of energy. As a side-effect, production of tar can be considered. Tar is a complex mixture of various organic compounds and affects negatively both the environment and the facilities where biomass is processed. Within the scope of this master thesis the analysis of tar samples from different materials was performed. As an appropriate analytical method the gas chromatography combined with flame ionization detection (GC-FID) and time-of-flight mass spectrometry (GC-TOF-MS) was chosen. The concentrations of volatile organic compounds known as BTEX, polycyclic aromatic hydrocarbons (PAH) and phenolic compounds were assessed.
30

Identifikace regulované soustavy, jednotka pro spalování biomasy / Process identification, experimental unit for biomass combustion

Macalík, Radek January 2008 (has links)
This thesis dissertates the identification of existing experimental unit of biomass combustion. It analyses particular methods of identification, the selection of a model and methods of the estimation of parameters, especially by using last square method and analysis of time-response characteristic. It describes common identification procedure and particular algorithms which were used in practice for obtaining model’s parameters. The thesis also mentions popular software tools used for the modeling and the identification of systems. It comprises the implementation of obtained mathematic models using programming environment Borland Delphi as well.

Page generated in 0.0844 seconds