• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modificações morfológicas e metabólicas em gramínea e leguminosa forrageiras tropicais relativas ao suprimento de enxofre / Metabolic and morphological changes in grass and legume tropical forages related to sulfur supply

Fábiana Schmidt 12 December 2012 (has links)
O enxofre é um dos elementos essenciais para as plantas e as exigências nutricionais nesse nutriente variam com a espécie e a taxa de crescimento das plantas. Com o objetivo geral de avaliar o efeito da nutrição em enxofre no crescimento e no metabolismo do capimtanzânia (Panicum maximum cv. Tanzânia) e do estilosante (Stylosanthes guianensis cv. Mineirão) desenvolveu-se a presente pesquisa com os objetivos específicos de avaliar os efeitos do fornecimento de enxofre em: i) modificações morfológicas, produtivas e nutricionais ocorridas na parte aérea e nas raízes; ii) metabolismo do nitrogênio e as consequentes alterações na composição e concentrações de aminoácidos; iii) concentrações de enxofre total, enxofre-sulfato e glutationa e na atividade das enzimas glutationa redutase e glutationa sulfo-transferase nas folhas recém-expandidas e raízes; iv) crescimento, metabolismo da glutationa e atividade das enzimas envolvidas no ciclo ascorbato-glutationa e v) absorção de sulfato e a expressão de genes de transportadores de sulfato. Os experimentos foram conduzidos em casa de vegetação e camara de crescimento, empregando-se soluções nutritivas. As doses de enxofre aplicadas foram ajustadas de modo a permitir nutrição baixa, intermediária e alta em enxofre para cada espécie. O enxofre afetou diretamente na emissão de folhas e de perfilhos, área foliar, comprimento e superfície radicular do capim-tanzânia e do estilosante Mineirão, aumentando a produção de massa seca da parte aérea e das raízes. A baixa disponibilidade de enxofre ocasionou o desequilíbrio nutricional com o nitrogênio nas plantas, evidenciado por alta relação nitrogênio:enxofre e altas concentrações de nitrato e aminoácidos livres no tecido vegetal. Sob limitação de enxofre, o capim apresentou predomínio de asparagina na composição aminoacídica, enquanto no estilosante ocorreu a predominância de arginina. A aplicação de enxofre aumentou as concentrações de enxofre total, enxofre-sulfato e glutationa nas folhas diagnósticas e raízes para ambas as espécies forrageiras. As plantas crescidas sob limitação de enxofre apresentaram alta atividade da enzima glutationa redutase visando regenerar a glutationa reduzida, que atua protegendo as células contra danos oxidativos decorrentes do estresse da deficiência nutricional. O fornecimento de enxofre aumentou a atividade da glutationa sulfo-transferase incrementando a capacidade do vegetal de suportar estresses ambientais. A baixa disponibilidade de enxofre induziu o aumento da atividade de enzimas antioxidantes que atuam na regeneração da glutationa e do ascorbato na forma reduzida. As plantas crescidas em baixa disponibilidade de enxofre apresentaram aumento da concentração de glutationa e maior alocação desse composto nas raízes. A distribuição de glutationa das folhas para as raízes em condição de limitação de enxofre regula a absorção de sulfato no capim e no estilosante de modo diferenciado. Para o capim com alta concentração de glutationa nas raízes decresce o influxo total de 34S, enquanto para o estilosante não ocasiona a redução da absorção de sulfato. / Sulfur is an essential element required by plants and the nutritional requirements in this nutrient vary according to species and plant growth rate. This research had the main objective of evaluating the effect of sulfur nutrition on growth and metabolism of Guinea grass (Panicum maximum cv. Tanzânia) and stylo (Stylosanthes guianensis cv. Mineirão) and was developed with the specific objectives to determine the effects on i) morphological, productive and nutritional changes in plant shoots and roots, ii) nitrogen metabolism and the changes in the composition and concentrations of amino acids, iii) concentrations of total sulfur, sulfur-sulfate and glutathione and the activity of the enzymes glutathione reductase and glutathione sulfo-transferase in recently expanded leaves and roots, iv) growth, glutathione metabolism and activity of enzymes involved in ascorbate-glutathione cycle and v) sulfate uptake and expression of sulfur transporters genes. The experiments were carried out in greenhouse and growth chamber, by using nutrient solutions. Sulfur supply were adjusted to low, intermediate and high S nutrition for each species. Sulfur supply influences the emission of leaves, tillering, leaf area, root length and surface of Guinea grass and stylo increasing production of dry mass of aboveground and roots. Sulfur limitation alters the distribution of photosynthates between aboveground and roots of Guinea grass and stylo providing reduction in dry matter production of roots. The plants of Guinea grass increase root surface as a mechanism for adaptation to limited S in the culture medium. The relative chlorophyll index (RCI) in the recently expanded leaves relates to the production of dry mass of aboveground and can be used to assess S nutritional status in Guinea grass and stylo. The application of S proves necessary to increase production of dry mass in Guinea grass and stylo. Low S availability caused nutritional imbalance with N in Guinea grass and stylo plants, as shown by a high N:S ratio and high concentrations of N-nitrate and free amino acids in plant tissues. Among amino acids, asparagine predominated in S-limited guineagrass and arginine in Slimited stylo. Increased S supply regulates N:S ratio at values close to 20:1, which provides N and S concentrations that are more suitable for protein synthesis and forage production in plants of both species. Adding S increased concentrations of total S, S-sulfate, and glutathione in diagnostic leaves and roots of both species collected at the two harvests. Plants grown under S limitation showed high levels of GR activity, related to the regeneration of GSH, which acts to protect cells against oxidative damage caused by the stress of nutritional deficiency. S supply increased GST activity, and consequently plants\' capacity to withstand environmental stresses. Low S availability increased activity of the antioxidant enzymes that act in the regeneration of GSH and AsA. Plants grown with low S availability showed higher concentration of glutathione and greater allocation of glutathione to roots. For Guinea grass, high glutathione concentrations in roots decrease the 34S uptake. For stylo not cause reduction of 34S uptake.
12

Towards a better characterization of morphological plasticity and biomass partitioning of trees in structural dynamics of mangrove forests

Olagoke, Adewole 09 December 2016 (has links)
Changing environmental conditions often impose stressful growing conditions in plant communities. Until now, morphological plasticity, i.e. polymorphic growth physiognomies of plants, has not been sufficiently studied as a pivotal strategy for the whole ecosystem adaptation to environmental stress. We consider mangrove ecosystems as suitable models to provide insights on this subject. In the thesis, I investigate the ecological significance of tree morphological plasticity in the structural development and the dynamics of mangrove forests. I conducted field experiments in two regions located on both sides of the Amazon River mouths i.e. in French Guiana and North Brazil. Forest inventories were carried out in contrasting mangrove stands in both regions. The thesis combines empirical analysis of field data, terrestrial laser scanning (TLS), and mechanistic, individual-based computer simulations. We published results that proved the TLS-based analysis of individual tree structure useful for a better knowledge on biomass allocation between trunk and branches in tall and large Avicennia germinans mangrove trees reaching 45 m high and 125 cm of trunk diameter. Combining structural descriptions of A. germinans trees found in both sites, I highlighted the site-specific differences in tree allometries. The study suggests that regional differences in mangrove tree structure and function could be captured through better description of crown metrics, and that selected indicators of local morphological plasticity and consequent stand structure could generate a plus-value in the understanding of mangrove stand dynamics across contrasting coastal environments. Beyond the extension of allometric models to large Avicennia trees, we proposed new biomass equations with improved predictive power when crown metrics is taken into account. Additionally, we developed a novel software tool, named Lollymangrove, based on the AMAPStudio suite of software, with the objective of maximizing the potential of further field descriptions and modeling works. Lollymangrove allows standardized forest data capture, 3D visualization of structural data, aboveground biomass computations from a configurable module and export formats for forest dynamics and remote sensing models. Simulation experiments were conducted by means of the spatially explicit, individual-based stand model BETTINA_IBM. This model describes the important mechanism of water uptake limited by salt stress, and revealed insights into the relation between environmental conditions, allometric variations and biomass partitioning of mangrove trees, and stand characteristics. The simulation results suggest close matches with observed ecological patterns (e.g., tree allometries, mortality distributions, and self-thinning trajectories) under higher salinity. In low salinity conditions, however, the current parameterization underestimates the maximum tree height and diameter, and consequently, aboveground biomass and self-thinning trajectories of forest stands. This suggests that the morphology of trees under low levels of salinity are explained by further regulation mechanism(s) that still need to be addressed in a subsequent model improvement. Overall, this work has essentially pointed out the need to elucidate how morphological plasticity relates with structural development of forest stands. It establishes that TLS measurements and structural data analysis associated to efforts for integrative software and mechanistic modelling works could link mangrove dynamics to fast-changing coastal processes.
13

Greenhouse Gas Abatement Potentials and Economics of Selected Biochemicals in Germany

Musonda, Frazer, Millinger, Markus, Thrän, Daniela 20 April 2023 (has links)
In this paper, biochemicals with the potential to substitute fossil reference chemicals in Germany were identified using technological readiness and substitution potential criteria. Their greenhouse gas (GHG) emissions were quantified by using life cycle assessments (LCA) and their economic viabilities were determined by comparing their minimum selling prices with fossil references’ market prices. A bottom up mathematical optimization model, BioENergy OPTimization (BENOPT) was used to investigate the GHG abatement potential and the corresponding abatement costs for the biochemicals up to 2050. BENOPT determines the optimal biomass allocation pathways based on maximizing GHG abatement under resource, capacity, and demand constraints. The identified biochemicals were bioethylene, succinic acid, polylactic acid (PLA), and polyhydroxyalkanoates (PHA). Results show that only succinic acid is economically competitive. Bioethylene which is the least performing in terms of economics breaks even at a carbon price of 420 euros per ton carbon dioxide equivalent (€/tCO2eq). With full tax waivers, a carbon price of 134 €/tCO2eq is necessary. This would result in positive margins for PHA and PLA of 12% and 16%, respectively. From the available agricultural land, modeling results show high sensitivity to assumptions of carbon dioxide (CO2) sequestration in biochemicals and integrated biochemicals production. GHG abatement for scenarios where these assumptions were disregarded and where they were collectively taken into account increased by 370% resulting in a 75% reduction in the corresponding GHG abatement costs.

Page generated in 0.1156 seconds