• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 176
  • 155
  • 19
  • 18
  • 12
  • 12
  • 12
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 452
  • 80
  • 62
  • 61
  • 56
  • 46
  • 42
  • 38
  • 37
  • 34
  • 33
  • 32
  • 29
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Polymer Nanoparticles as a Degradable, Mucoadhesive Drug Delivery System

Mangiacotte, Nicole January 2016 (has links)
One of the most common methods of drug delivery to the anterior segment of the eye is topical application of an ophthalmic solution or suspension. The ophthalmic solution may contain various particle based materials, such as nanoparticles, to control the rate at which the drug is delivered to the eye. The issue with this delivery method is that there are several barriers at the front of the eye. These barriers, which include a high tear film turnover rate and induced lacrimation, reduce the residence time of the drug at the site of administration and result in 95% of the administered drug being removed systemically or via nasolacrimal drainage. Additionally, once the material has left the target location it should degrade in a controlled manner so that it can be safely removed from the body. The current work focuses on the development of polymeric nanoparticles that can serve as a delivery system for ophthalmic drugs. The material proposed for the nanoparticle synthesis is poly(2-hydroxyethyl methacrylate (HEMA)), a polymer with a long history of ophthalmic compatibility. The original nanoparticle formulation was modified to allow for degradation and mucoadhesion. To facilitate degradation, a crosslinker which degrades under ocular conditions was incorporated. A mucoadhesive polymer was incorporated into the particles to enhance the residence time of the particles at the front of the eye. Size and morphology analysis of the final polymer products showed that nano-sized, spherical particles were produced. FTIR spectra demonstrated that the nanoparticles were comprised of poly(HEMA) and that 3-(acrylamido)phenylboronic acid (3AAPBA) was successfully incorporated. Degradation of nanoparticles containing N,N’-bis(acryloyl)cystamine (BAC) after incubation with DL-dithiothreitol (DTT) was confirmed by a decrease in turbidity, measured by absorbance, and through transmission electron microscopy (TEM). Based on zeta potential results, poly(HEMA, BAC, 3AAPBA) samples C3 to C6 were found to be mucoadhesive. Dexamethasone release from poly(HEMA) nanoparticles and poly(HEMA, BAC, 3AAPBA) nanoparticles, loaded with efficiencies of 15.0% ±1.4% and 5.3% ±0.4%, resulted in rate constants of 0.001 and 0.002, and release exponents of 0.607 and 0.586, respectively. The toxicity of the nanoparticles was tested by incubation in the presence of human corneal epithelial cells (HCEC). In the presence of the poly(HEMA), poly(HEMA, BAC), and poly(HEMA, BAC, 3AAPBA) samples the HCEC viability was found to be 123.6% to 182.5%, 88.5% to 111%, and 69.8% to 85.1%, respectively. The viability of HCEC after incubation with poly(HEMA) was significantly higher compared to poly(HEMA, BAC) samples with a dilution factor of 0 and 2. Additionally, the HCEC viability in the presence of poly(HEMA, BAC, 3AAPBA) sample C6 was found to be significantly lower compared to samples C2 and C3 from Table 3. The previously summarized results suggest that the poly(HEMA) based nanoparticles produced in this work have the potential for drug delivery to the front of the eye. / Thesis / Master of Applied Science (MASc)
72

MOLECULAR ENGINEERING OF A SELF-ASSEMBLING NUCLEOBASE COATING WITH NANO-SCALE CONTROL

Kumar, Aryavarta M. S. 10 July 2007 (has links)
No description available.
73

The In Vitro Effects of Biomaterials on Lymphocyte Responses to an Allogeneic Challenge

Farooqui, Nadira 08 1900 (has links)
It has been shown that when implanted individually, both cells and biomaterials elicit biological responses. Implanted cells are often destroyed by the host's immune system, while biomaterials activate foreign body reactions which can result in inflammation and fibrotic encapsulation. However, when implanted simultaneously, the inflammatory responses to the biomaterial component can alter the immune responses to the cellular component. The experiments described in this thesis were designed to characterize the effect of different biomaterials on adaptive immune responses towards an allogeneic challenge. Balb/c splenocytes were challenged with irradiated allogeneic L929 cells, and treated with different biomaterials. Alterations in adaptive immune responses were quantified by T cell proliferation and cytokine release (i.e. IL-1(beta), IL-4, IL-12, and IFN-(gamma)). The roles various cell types played in first set responses were investigated. Experimental results indicated that biomaterials had a significant influence on nonspecific proliferation of splenocytes. In particular, analysis of the degree to which biomaterials affected specific proliferation indicated that the soluble alginate treatment significantly increased proliferation differences when compared to the control. However, biomaterials neither significantly affected specific splenocyte proliferation to an allogeneic challenge, nor the profile of secreted cytokines. To elucidate this response, alginate-treated splenocytes were depleted of adherent macrophages, CD4+ cells or CD8+ cells. Within non-challenged mixtures, CD4+ depletion had the most obvious effect. These results were supported by the non-depleted challenges, and indicated the direct influence biomaterials on CD4+ T cell proliferation. / Thesis / Master of Applied Science (MASc)
74

Study of immune and haemostatic response induced by protein multilayers. / Studie av immunologiska och haemostatiska svar inducerade av proteinmultilager.

Richter, Maja January 2010 (has links)
FibMat2.0 is a fibrinogen multilayer developed by AddBIO. Other proteins such as immunoglobulin G (IgG) and human serum albumin (HSA) can also be used to build multilayers with the same technique. The aim of this study of FibMat2.0 was to investigate if the manufacturing of the protein multilayer would induce an immune or haemostatic response in the body. The multilayers of IgG and HSA were also studied. Methods such as null ellipsometry, imaging of coagulation and the cone-and-plate setup were used to study immune reactions, activation of the coagulation cascade, and stability of the multilayers. Small amounts of plasma proteins were adsorbed to fibrinogen multilayers, but complement proteins adsorbed only to the IgG matrix and high molecular weight kininogen (HMWK) adsorbed only to the HSA monolayer. The imaging of coagulation method indicated that the titanium surface and the HSA monolayer activate surface induced coagulation rapidly, whereas fibrinogen and IgG multilayers demonstrated longer coagulation times. Platelets and a few white blood cells were bound to titanium surfaces and fibrinogen multilayers, but not to IgG multilayers or HSA monolayers. A conclusion in this study is that the surface of an implant can be coated with FibMat2.0 without any risks, but more studies are needed to better understand the interactions between the surfaces prepared in the present study and the immune and the haemostatic systems of the human body.
75

Fabrication of a Bioactive Scaffold Material for Meniscus Tissue Engineering

Chen, GINGER 20 November 2013 (has links)
Injuries to the meniscus are a common and important source of mobility issues in the knees of young active individuals, as well as elderly individuals. Conventional treatments for these injuries involve surgical resections of the damaged portions of tissue in order to relieve immediate clinical symptoms. However, with a decreased amount of meniscal tissue remaining, the load-bearing and load-distribution capacities remain compromised and inevitably lead to the development of osteoarthritis.1 In view of these deficiencies, tissue engineering has emerged as a promising alternative approach to meniscus repair. In this approach, biodegradable synthetic materials have been proposed as scaffolds to stimulate and support cell-mediated tissue remodeling. A wide range of synthetic materials have been developed to respond to the physical and chemical requirements of a scaffold, but many lack the necessary biological properties to respond to cellular stimuli. In addition, many of these materials are deficient in mechanical strength. The aim of this study was to develop a novel biomaterial that addresses these limitations. Poly(trimethylene carbonate) (PTMC) was selected as the main component of the scaffold due its highly suitable material properties. PTMC is a biocompatible, biodegradable polymer with excellent elastomeric properties and mechanical strength. It also offers the advantage of providing long-term mechanical support due to its low degradation rate. However, PTMC alone cannot stimulate tissue regeneration due to its bio-inert nature. In order to provide an ideal environment to support tissue repair, it must possess bioactive signals. PTMC was combined with a collagenase-sensitive peptide substrate to render the scaffold invasive by cells. The peptide also served to increase the slow degradation rate of PTMC by providing cleavage points throughout the network. The compressive strength of this material was significantly higher than previously used scaffold materials. Additionally, the material possessed enhanced toughness and elasticity, high equilibrium water content, and a tunable degradation profile. Unlike currently used scaffolding materials, this material satisfies all of the necessary requirements to function as an effective scaffold for meniscus regeneration. / Thesis (Master, Chemical Engineering) -- Queen's University, 2013-11-20 15:36:06.12
76

Design, synthesis, and evaluation of nontoxic, biodegradable glycerol-based polycarbonates as novel biomaterials

Zhang, Heng 09 November 2016 (has links)
Synthetic polymers intended for use in biomedical applications require the additional criteria of biocompatibility and sometimes biodegradability included within the design parameters along with mechanical properties, manufacturability, and other properties depending on the specific application in mind. The composition of the monomer and the type of linker within the main chain polymer as well as the chemical reactivity of these chemical entities will define the degradation rates and the conditions under which degradation will or will not occur. However, biocompatibility is usually a built-in characteristic related to the polymer (and monomer) composition and is not easily engineered into an existing polymer by conversion from a non-biocompatible to a biocompatible polymer. Consequently, a majority of the biocompatible polymers used in medical devices or evaluated for biomedical uses are composed of substances that are natural metabolites or known to be biocompatible and nontoxic. Using this design principle, a number of successful examples of biocompatible polymers have been reported such as poly(lactic acid), poly(glycolic acid), and their copolymers, and today, all of these polymers are used in US and EU approved devices. For similar reasons, glycerol-based polymers are attracting increasingly more attention for both fundamental studies and practical applications. Various glycerol polymer architectures from linear to dendritic have been reported for pure polyglycerol ethers and carbonates as well as copolymers with hydroxyacids, for example, to give polyether esters or polycarbonate esters. Herein, the design and synthesis of glycerol-based polycarbonates via copolymerization of epoxide and carbon dioxide is described. The underlying chemistry that affords these glycerol-based polycarbonates will be discussed. Their structural characteristics, their chemical, physical, and rheological properties, and as well as their applications with a focus on drug carrier will also be covered.
77

Nanomaterial and Biomaterial Approaches for Treating Chronic Wounds

Lazurko, Caitlin 25 June 2019 (has links)
Diabetic foot ulcers (DFUs) are a common and severe adverse event associated with diabetes, as 25% of diabetic patients will experience DFUs. The lack of effective DFU therapies results in 20% of diabetic patients requiring amputation. We first developed an algorithm to account for polydispersity when calculating nanoparticle concentration, which will reduce variability between batches and treatments. We also developed a novel 2-layer biomaterial, which combines anti-microbial properties of CLKRS peptide coated silver nanoparticles (CLKRS- AgNPs) with a pro-regenerative collagen matrix embedded with microscopic skin tissue columns (MSTC), to promote DFU wound healing. The collagen hydrogel formulation was optimized, and the physical properties, biocompatibility, and wound healing properties were assessed. Our results indicate that the CLKRS-AgNPs prevent bacterial growth and the collagen matrix provides a regenerative environment. Last, we developed and tested antimicrobial fabrics which can also be applied to chronic wounds, such as DFUs, to prevent and treat infections.
78

Antibacterial nanoparticle-decorated carbon nanotube-reinforced calcium phosphate composites as bone implants

Natesan, Kiruthika January 2018 (has links)
Hydroxyapatite (HA) is a biologically active ceramic used in surgery to replace bone. While HA promotes bone growth, it suffers from weak mechanical properties and does not possess any antibacterial property. Multi walled carbon nanotubes (MWCNTs), as one of the strongest and stiffest materials, have the potential to strengthen and toughen HA, thus expanding the range of clinical uses for the material. Furthermore, Silver nanoparticles (Ag NPs) can be decorated to sidewalls of the MWCNTs which could be released over a period of time to prevent infection following surgery. This work sought to develop and characterise Ag NPs- MWCNTs – HA composites in four main areas: 1) production and characterisation of the composite, 2) evaluation of mechanical properties, 3) investigation of antimicrobial property and 4) assessment of biological response to in vitro cell culture. Pristine (p-MWCNTs) and acid treated MWCNTs (f-MWCNTs) were decorated with Ag NPs. In the presence of 0.5 wt % Ag NPs-MWCNTs, HA was precipitated by the wet precipitation method in the presence of either poly vinyl alcohol (PVA) or Hexadecyl trimethyl ammonium bromide (HTAB) as the surfactant. Composites were characterised using various techniques and the diameteral tensile strength and compressive strength of the composites were measured. The antibacterial effect of these composites was investigated against clinically relevant microbe, Staphylococcus aureus. To determine the ability of the HOB cells to differentiate and mineralize in the presence of the composite, HOB cells were cultured on the composites for 21 days. Gene expression studies was performed along with the biochemical assays and scanning electron microscopy was used for qualitative analysis. Pure HA was used as control in all the studies. The study revealed that both the MWCNTs and surfactants play a crucial role in the nucleation and growth of the HA. XRD and FTIR characterisation revealed that HA was the primary phase in all the synthesised powders. Composites made with f-MWCNTs were found to have better dispersion and better interaction with the HA compared to composites with p-MWCNTs. Although mechanical strength was improved in all the composites, p-MWCNTs composites exhibiting maximum strength. Antibacterial studies showed 80% bacterial reduction in the treatment composites compared to pure HA. The biocompatibility study showed reduced activity of the HOB cells, however, no significant difference was observed between the control and the treatments. This systematic study of the synthesis and properties of the Ag NPs- MWCNTs-HA composites has resulted in improved understanding of the production and processing of these materials and the effect of MWCNTs and silver nanoparticles on primary human osteoblast cells. Additionally, it has yielded interesting biocompatibility result favouring the use of MWCNTs in the development of implants. There is potential to translate Ag NPs-MWCNTs-HA composites into clinically approved product.
79

Template-assisted fabrication of nano-biomaterials

Dougherty, Shelley A. 18 August 2009 (has links)
"“One-dimensional” nanostructures like nanotubes and nanorods hold great potential for a wide variety of applications. In particular, one-dimensional nanostructures may be able to provide many significant advantages over traditional spherical particles for drug delivery applications. Recent studies have shown that long, filamentous particles circulate longer within the body than spherical particles, giving them more time to reach the target area and deliver their payload more efficiently. In addition, studies investigating the diffusion of drugs through nanochannels have shown that the drug diffusion profiles can be controlled by varying the nanochannel diameter when the drug diameter and nanochannel diameter are close in size. The combination of increased circulation time and controllable drug release profiles give onedimensional nanostructure great potential for future drug release applications. To fully realize this potential, a simple, low cost, and versatile fabrication method for one-dimensional nanostructures needs to be developed and exploited. The objective of this work is to demonstrate the versatility of template-assisted nanofabrication methods by fabricating a variety of unique protein and polymer one-dimensional nanostructures. This demonstration includes the adaptation of two different template-assisted methods, namely layer-by-layer assembly and template wetting, to fabricate glucose oxidase nanocapsules with both ends sealed, segmented polystyrene and poly(methyl methacrylate) nanorods, and poly(L-lactide)-poly(methyl methacrylate) core-shell nanowires with adjustable shell layer thicknesses. The unique nanostructure morphologies that were achieved using our novel fabrication methods will open the arena for future research focused on process control and optimization for specific applications."
80

Desenvolvimento de poliuretano empregando poliol de óleo de andiroba obtido via catálise enzimática

Silva, João Antonio Pessoa da January 2017 (has links)
O objetivo deste trabalho foi estudar a síntese de poliol de óleo de andiroba (POA) e utilizá-lo como matéria prima para a produção de poliuretanos (PUs). A síntese do poliol foi realizada por catálise enzimática com a lipase comercial Novozym 435. A reação foi feita em reator de leito fixo, empregando óleo de andiroba e glicerol (GLI) como substrato, em proporção molar 2:1, e t-butanol (TB) como solvente. Foram avaliadas as relações solvente:substrato de 50, 100 e 150 % e temperaturas de 40, 50 e 60 °C. Os produtos da reação, monoglicerídeos (MAGs), diglicerídeos (DAGs) e triglicerídeos (TAGs), foram quantificados através de cromatografia líquida de alta eficiência (CLAE), índice de acidez (IA) e espectroscopia de infravermelho com transformada de Fourier (FTIR). O poliol obtido na condição 50°C e 150 % solvente foi escolhido para a produção dos PUs, devido à sua maior quantidade de MAG (66 %) e menor de DAG (28 %) e TAG (5 %). Os PUs foram produzidos empregando-se poliol, biureto de hexametileno de diisocianato (BHD), dibutil dilaurato de estanho como catalisador e, apenas para produção de espumas, água destilada como agente expansor. Utilizaram-se razões NCO/OH de 0,8 e 1 para os filmes e NCO/OH=1 para as espumas. Na produção das espumas o POA foi combinado com GLI nas proporções de 25 e 50 %. A formação de PU a partir do poliol de andiroba foi confirmada por FTIR e análise termogravimétrica. Os filmes de PU obtidos apresentaram caráter hidrofílico e defeitos de superfície devido à formação de bolhas durante o processo de formação. A resistência à tração dos filmes mostrou-se dependente da quantidade de poliol, não tendo sido possível a obtenção de espumas sem a adição de glicerol. A resistência mecânica das espumas produzidas foi baixa, devido à baixa funcionalidade do POA e a presença de DAG e TAG, porém similar àquela reportada na literatura para alguns outros tipos de espumas de PU. Assim, este trabalho demonstrou a possibilidade da utilização do óleo de andiroba para a produção de PUs e, com base nas propriedades mecânicas dos materiais produzidos e nas características intrínsecas da andiroba, abre novas possibilidades de desenvolvimento de materiais com potencial para aplicações medicinais. / The goal of this work was to study the synthesis of andiroba oil polyol (AOP) and use it as raw material for the preparation of polyurethanes (PUs). The AOP synthesis was performed by enzymatic catalysis employing the commercial lipase Novozym 435. The reaction was carried out in a fixed bed reactor using andiroba oil and glycerol (GLI) at 1:2 molar ratio as substrate, and t-butanol (TB) as solvent. Solvent:substrate ratios of 50, 100 and 150 % and temperatures of 40, 50 and 60 °C were evaluated. The reaction products, monoglycerides (MAGs), diglycerides (DAGs) and triglycerides (TAGs), were quantified through high performance liquid chromatography (HPLC), acidity index (IA), and Fourier transform infrared spectroscopy (FTIR). The polyol obtained at 50 °C and 150% solvent was chosen for PU production, due to its higher content of MAG (66 %) and lower content of DAG (28 %) and TAG (5 %). PUs were prepared from AOP, hexamethylene diisocyanate biuret (BHD), dibutyl-tin dilaurate as catalyst, and, for the foams, distilled water as blowing agent. NCO/OH ratios of 0.8 and 1 were used for the films. For the foams, NCO/OH = 1 and AOP/GLI blends with 25 and 50 % of glycerol were employed. The formation of PU from the AOP was confirmed by FTIR and thermogravimetric analysis. The obtained PU films presented hydrophilicity and surface defects due to the formation of bubbles during the formation process. The tensile strength of the films was shown to be dependent on the amount of polyol, and it was not possible to obtain foams without the addition of glycerol. The mechanical strength of the foams produced was low, due to the low functionality of the POA and the presence of DAG and TAG, but similar to that reported in the literature for some other types of PU foams. Thus, this work demonstrated the possibility of using andiroba oil for the production of PUs. Besides, based on the mechanical properties of the materials produced and the intrinsic characteristics of andiroba, it opens new possibilities for the development of materials with potential for medicinal applications.

Page generated in 0.075 seconds