• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biomimetic floating lipid membranes

Daulton, Emma January 2015 (has links)
No description available.
2

Systematic study of amyloid beta peptide conformations: Implications for alzheimer's disease

Jimenez, Jeffy Pilar 01 June 2005 (has links)
The amyloid beta peptide particularly the 40 and 42 amino acid residues are the responsible for plaque formation in Alzheimer's disease (AD) patients. Extra cellular plaque formation has been recognized after incessant investigations along with the formation of intracellular tau protein tangles as the hallmarks of AD. Furthermore, the plaque formation has been linked mostly as a cause of the disease and the tangles mostly as a consequence. Our investigation is focused on studying the formation of AD plaques. The amyloid beta (A[beta]) is a physiological peptide secreted from neurons under normal conditions, along with other soluble forms cleaved from the amyloid precursor protein (APP). These soluble forms of APP have neuroprotective and neurotrophic functions, while the A[beta] is considered an unwanted by-product of the APP processing. Under normal conditions there is an anabolic/catabolic equilibrium of the A[beta] peptide; therefore, it is believed that the formation of the plaque does not take place. On the other hand, the neurons' surface may play an important role in the adhesion mechanisms of the A[beta] peptide. Our experiments show that the neuron surfaces along with the media conditions may be the most important causes for progressive formation of plaques. We have incubated rigid supports (mica) and soft biomimetic substrates (lipid bilayers on top of a PEG cushion layer drafted onto a silica surface) with the three different conformations of the A[beta] peptide (monomeric, oligomeric and fibrils structures) to determine the adhesion mechanisms associated with in situ plaque formation. The soft biomimetic substrates have been assembled first by depositing and activating a thin film of silica (i.e., to create surface silanol groups). This film is then reacted with polyethylene glycol (PEG), which is a biocompatible polymer, to create a cushion-like layer that supports and allows the lipid bilayer to have high mobility. A lipid bilayer is then deposited on this soft support to reproduce a cell membrane using the Langmuir Blodgett deposition technique. The characterization of such biomimetic membranes has been studied by using Atomic Force Microscopy (AFM) in liquid environments. Our results show that these lipid bilayers are highly mobile. Additionally the structure and topography characteristics of the A[beta] conformations have been followed with atomic force microscopy (AFM). The kinetics and rates of adhesion have been measured with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Our results show the progress of the plaques' formation with time where simple monomers deposit on the substrates and allow the development of oligomeric species.
3

Conception guidée par la physiologie de biopiles bioinspirées implantables / Physiological considerations for the design and integration of bioinspired implantable biofuel cells

Alcaraz, Jean-Pierre 19 October 2016 (has links)
On peut imaginer dans un futur proche que des micro-robots implantés pourront suppléer la défaillance de certaines fonctions essentielles. C’est déjà le cas avec les stimulateurs cardiaques dont les piles au lithium sont bien adaptées à leur fonctionnement pendant des années de vie du patient. Cependant, pour des systèmes plus gourmands en énergie, il convient d’améliorer la longévité et la puissance volumique de ces piles. La stratégie que nous avons choisie est basée sur une approche biomimétique et deux voies ont été suivies pour créer une biopile bioinspirée : les biopiles enzymatiques génèrent un courant électrique à partir de l’oxydation de molécules organiques et la réduction d’oxygène en eau. Les biopiles à base de membranes biomimétiques génèrent un potentiel électrique à partir du transfert d’ions au travers une membrane biomimétique.Les biopiles enzymatiques, qui utilisent par exemple le glucose et l’oxygène, sont théoriquement capables de fonctionner indéfiniment car ces substrats sont toujours présents dans l’organisme. Cependant, la biocompatibilité et la performance à long terme de ces biopiles restent des verrous pour leur mise en œuvre chez l’homme. Cette thèse décrit la conception et l’implantation de nouvelles biopiles enzymatiques chez différents modèles animaux. Leur implantation constitue un véritable défi technologique et nous amenons des solutions guidées par la physiologie en abordant les problèmes de biocompatibilité mais aussi de techniques de mesure électrique.Nous sommes maintenant capables d’implanter ces biopiles chez de gros animaux en analysant en temps réel les performances de la biopile implantée.Cette thèse développe également le concept de biopile à base de membranes biomimétiques. Il s’agit d’une biopile mettant en œuvre des protéines de transport (par exemple des canaux ioniques) insérées dans des membranes biomimétiques. Nous avons démontré la faisabilité de la transformation d’un gradient de NaCl en gradient de protons. Nous avons aussi réussi à générer une différence de potentiel de 20 millivolts avec une membrane plane de 38 mm². Cette membrane biomimétique, contenant l’échangeur sodium/proton NhaA, est stable pendant plus de 15 jours. / We believe that in the near future micro-robots or artificial implanted organs can replace failing essential organs. Lithium batteries of cardiac pacemakers are well adapted to operate for years into sick patients. However, for next generation energy intensive implanted devices, longevity and volumic power of these batteries have to be improved.We chose two biomimetic approaches to create bioinspired biofuel cells: the enzymatic biofuel cells generate electrical current from the oxidation and the reduction of organic or inorganic compounds. The biomimetic biofuel cell generate an electrical potential from ion transfer across a biomimetic membrane.The enzymatic biofuel.cells, utilizing glucose and oxygen, are theorically able to work almost indefinitely as their substrates are always present in the body fluids. However, the biocompatibility and the long-term performance of these biofuel cells for a human implantation remain a real bottleneck. This thesis describes the design and the implantation of of new enzymatic biofuel cells in different animal models. The implantation of such devices is challenging and we brought creative solutions with a physiological point of view by addressing biocompatibility problems and electrical measurement techniques. We are now capable to implant these biofuel cells in big animals by analyzing the performances of the biofuel cell in real time.This thesis initiates the biomimetic biofuel cell concept. It consists in membrane transport protein (i.e ion channels) incorporated in a biomimetic membrane. The building of a biomimetic device demonstrates the transformation of a NaCl gradient into a proton gradient. We also generate a 20 mV voltage with a 38 mm² flat membrane. This biomimetic membrane containing the NhaA sodium/ proton exchanger is stable for more than two weeks.
4

PORE-CONFINED CARRIERS AND BIOMOLECULES IN MESOPOROUS SILICA FOR BIOMIMETIC SEPARATION AND TARGETING

Zhou, Shanshan 01 January 2017 (has links)
Selectively permeable biological membranes composed of lipophilic barriers inspire the design of biomimetic carrier-mediated membranes for aqueous solute separation. This work imparts selective permeability to lipid-filled pores of silica thin film composite membranes using carrier molecules that reside in the lipophilic self-assemblies. The lipids confined inside the pores of silica are proven to be a more effective barrier than bilayers formed on the porous surface through vesicle fusion, which is critical for quantifying the function of an immobilized carrier. The ability of a lipophilic carrier embedded in the lipid bilayer to reversibly bind the target solute and transport it through the membrane is demonstrated. Through the functionalization of the silica surface with enzymes, enzymatic catalysis and biomimetic separations can be combined on this nanostructured composite platform. The successful development of biomimetic nanocomposite membrane can provide for efficient dilute aqueous solute upgrading or separations using engineered carrier/catalyst/support systems. While the carrier-mediated biomimetic membranes hold great potential, fully understanding of the transport processes in composite synthetic membranes is essential for improve the membrane performance. Electrochemical impedance spectroscopy (EIS) technique is demonstrated to be a useful tool for characterizing the thin film pore accessibility. Furthermore, the effect of lipid bilayer preparation methods on the silica thin film (in the form of pore enveloping, pore filling) on ion transport is explored, as a lipid bilayer with high electrically insulation is essential for detecting activity of proteins or biomimetic carriers in the bilayer. This study provides insights for making better barriers on mesoporous support for carrier-mediated membrane separation process. Porous silica nanoparticles (pSNPs) with pore sizes appropriate for biomolecule loading are potential for encapsulating dsRNA within the pores to achieve effective delivery of dsRNA to insects for RNA interference (RNAi). The mobility of dsRNA in the nanopores of the pSNPs is expected to have a functional effect on delivery of dsRNA to insects. The importance of pores to a mobile dsRNA network is demonstrated by the lack of measurable mobility for both lengths of RNA on nonporous materials. In addition, when the dsRNA could not penetrate the pores, dsRNA mobility is also not measurable at the surface of the particle. Thus, the pores seem to serve as a “sink” in providing a mobile network of dsRNA on the surface of the particle. This work successfully demonstrates the loading of RNA on functionalized pSNPs and identified factors that affects RNA loading and releasing, which provides basis for the delivery of RNA-loaded silica particles in vivo.
5

Réalisation d'une membrane solide bio-inspirée constituée d'un film polymere nanoporeux et de gramicidine-A : caracterisation de ses propriétés de transport ionique / New Bio-inspired Membrane made of a biological ion channel confined into the cylindrical nanopore of solid-state : characterization of ion transport properties

Berardo, Lydie 21 November 2012 (has links)
Ces travaux de thèse s'inscrivent dans le cadre d'un vaste projet qui vise à construire des membranes hybrides constituée d'un support solide nanoporeux et de protéines canal-ionique biologiques. Nous nous intéressons ici à un film polymère nanoporeux en polycarbonate et à la Gramicidine-A. La membrane ainsi réalisée est étudiée par des mesures expérimentales. Ce travail peut être divisé en deux parties. Dans la première, nous rapportons l'étude du confinement de la protéine canal ionique, au sein des nanopores du film « track-etched » en polycarbonate. Après imprégnation de gA, la membrane est étudiée par Spectroscopie de Fluorescence Confocale. Les premiers résultats expérimentaux particulièrement encourageants montrent que la gA est localisée dans les nanopores et non pas à la surface de la membrane. Dans la deuxième, les propriétés de transport ionique de la membrane hybride sont caractérisées par le biais de deux grandeurs : d'une part les coefficients de diffusion mesurés à partir d'une cellule et d'autre part les conductivités via la Spectroscopie d'Impédance Complexe (S.I.C). Les électrolytes aqueux étudiées sont : XCl(2) où X=Na, K, Mg et Ca à des concentrations comprises entre 5.10-3 à 1M. Une étude statistique approfondie des données obtenues par la méthode de la variance permet de déterminer les effets relatifs des différentes variables : nature et concentration du sel, présence de la Gramicidine A et traitement à l'éthanol de la membrane. Cette analyse révèle clairement que la présence de Gramicidine A au sein des nanopores de 15nm modifie de façon positive le transport ionique. Il est, par contre, difficile de conclure sur la nature sélective du transport ionique en présence de cette protéine. Ce travail de thèse ouvre un champ de recherche très prometteur dans le domaine de la nanofiltration. / This project of thesis is to build of a bio-inspired hybrid membrane made of a thin nanoporous polymer film in which a biological ionic channel is confined. Thus, this work may be divided in two parts. First, we report the confinement of the biological ionic channel, i.e. Gramicidin A, inside the nanopore of nanoporous thin film, i.e. a track etched polycarbonate film (Whatman NucleoporeTM). After impregnation with Gramicidine-A, the membrane is studied by means of confocal fluorescence spectroscopy. The results show the ionic channel is well located into the nanopores and not at the surface of the membrane. Secondly, ionic transport properties are measured by means of two experiments: on the one hand, ionic diffusion coefficients are measured using a cell and on the other hand, ionic dc conductivity is measured via Complex Impedance Spectroscopy (SIC). Various aqueous electrolytes (XCl(2) where X=Na,K, Mg et Ca) at different concentrations ranging from 5.10-3 à 1M are carried out. A statistical analysis of the data so-obtained allows to determine the relative effects of the different parameters: the nature and concentration of the electrolytes, the presence of Gramicidine A and the membrane pre-treatment with ethanol treatment. It is thus clearly pointed out that the presence of Gramicidine A inside the 15nm nanopores improves ion permeability. However, it is difficult to conclude about ionic selectivity of the hybrid membrane. Nevertheless, this work which is the first attempt ever to build such a bio-inspired system opens an extremely promising field of research in the domain of nanofiltration.
6

Analyse moléculaire des gènes cry1A d’une souche de Bacillus thuringiensis et étude de l’interaction des toxines correspondantes dans une modèle de membrane biomimétique / Molecular analysis of cry1A genes of a Bacillus thuringiensis strain and study of the interaction of the corresponding toxins with a biomimetic membrane system

El Khoury, Micheline 22 March 2013 (has links)
Bacillus thuringiensis (Bt) est une bactérie produisant des inclusions protéiques cristallines à pouvoir insecticide et elle est largement exploitée à l'échelle industrielle. Dans cette étude, des souches de Bt ont été isolées du sol libanais. Nous avons étudié en premier la présence des principaux gènes cry1A codant pour des δ-endotoxines actives sur les lépidoptères. Les souches possédant ces gènes ont été testées pour leur toxicité sur des larves d'Ephestia kuehniella (E. kuehniella). Une souche nommée Lip, étant quatre fois plus toxique sur ces larves que la référence mondiale Bt subsp. kurstaki HD1, fut sélectionnée pour une étude plus approfondie. Après clonage et séquençage, nous avons identifié une nouvelle toxine de type Cry1Aa : Cry1Aa22 et une nouvelle variante de la toxine Cry1Ac. Ces dernières se sont montrées plus toxiques sur des larves d'E. kuehniella, et plus stables en présence des protéases intestinales de ces larves que Cry1Aa et Cry1Ac de HD1 permettant d'expliquer la toxicité élevée de la souche sauvage. D'autre part, nous avons optimisé la construction d'un modèle de membrane biomimétique incluant la membrane de la bordure en brosse intestinale (BBM) des larves d'E. kuehniella. Ces membranes nous ont servi à l'étude de l'interaction des toxines Cry1Aa et Cry1Ac de Lip et celles de HD1. Les toxines de Lip ont interagit différemment et avec une plus grande affinité avec ces modèles que celles de HD1.Tous ces résultats montrent que Lip est une souche intéressante pour une exploitation industrielle et que le modèle de membrane biomimétique est une alternative permettant la prédiction de l'affinité des toxines Cry. / Bacillus thuringiensis (Bt) is a bacterium that synthesizes insecticidal proteic crystallin inclusions and is widely used at an industrial scale. In this study, Bt strains were isolated from Lebanese soil. We studied the presence of the main cry1A genes encoding for δ-endotoxins active on Lepidoptera. Strains harboring these genes were tested for their toxicity against Ephestia kuehniella (E. kuehniella) larvae. The strain named Lip, being four folds more toxic to the larvae than the reference strain Bt subsp. kurstaki HD1, was selected for further study. We identified a novel Cry1Aa toxin, Cry1Aa22, and a variety of the Cry1Ac toxin after cloning and sequencing of the corresponding genes. These toxins were more toxic to E. kuehniella larvae and more stable in the presence of these larvae's intestinal midgut juice than Cry1Aa and Cry1Ac of HD1. Moreover, we optimized the construction of a biomimetic membrane model based on the intestinal brush border membrane (BBM) of E. kuehniella larvae. These models were used to study the interaction of Cry1Aa and Cry1Ac of Lip and HD1. Toxins of Lip interacted differently and with a greater affinity with these model membranes than toxins of HD1.These results show that Lip is an interesting Bt strain that could be exploited at an industrial scale. On another hand, the biomimetic membrane constructed in this study could be an alternative allowing the prediction of the Cry toxin's affinity.
7

Plateforme Nano Bio Intelligente : membrane biomimétique pour la reconstitution d'une cascade calmoduline dépendante / Intelligent Nano Bio Platform : Biomimetic membrane for the reconstitution of a Calmodulin dependent cascade

Veneziano, Rémi 25 November 2013 (has links)
L'objectif principal de ces travaux de thèse est de développer des modèles membranaires biomimétiques pour la reconstitution et l'étude d'interactions protéine/membrane. Dans ce but, deux approches sont adoptées : l'une mettant en œuvre une plateforme basée sur des nanoparticules de silice/Au recouvertes de lipides et l'autre comprenant la formation de bicouches lipidiques découplées d'un support solide d'or. Dans la première approche, nous avons synthétisé des particules de silice de taille nanométrique contenant des grains d'or inclus dans la matrice silicique. Ces nanoparticules sont ensuite recouvertes par différents phospholipides. Les propriétés plasmoniques acquises grâce aux grains d'or sont caractérisées puis utilisées pour suivre l'interaction avec les lipides et/ou les protéines. Le suivi de ces interactions est également visualisé par analyse de la mobilité électrophorétique des particules. La deuxième stratégie développée, consiste à assembler un système membranaire sur une surface solide d'or. Dans un premier temps, une couche de calmoduline est liée à la surface de manière stable. Dans un deuxième temps, une bicouche est formée au-dessus de la couche de calmoduline par deux méthodes. La première méthode consiste à ancrer la bicouche directement sur la couche de protéine par un mécanisme faisant intervenir des lipides chélateurs. Alors que dans la deuxième méthode les lipides sont liés à la surface et découplés grâce à l'utilisation d'une surface d'or modifiée par de la cystéamine et à des lipides fonctionnalisés. L'ancrage est assuré par des groupements succinimidyl et le découplage par des polymères de polyéthylène glycol porté sur un même lipide. Dans les deux stratégies, un réservoir sub-membranaire est créé entre la bicouche étanche et le support. Le suivi des constructions moléculaires est réalisé par résonance plasmonique de surface et analyse du retour de fluorescence. De plus le système est implémenté par des électrodes afin d'étudier l'effet d'application de potentiel sur la bicouche. Après caractérisation, le modèle membranaire est validé par la reconstitution de la translocation de la toxine CyaA de Bordetella pertussis. Cette protéine dispose en effet d'un mécanisme d'internalisation singulier qui permet d'explorer tout le potentiel de notre modèle membranaire. / The main objective of this work is to develop biomimetic membrane models for the reconstitution and study of protein/membrane interaction. Two devices were designed: one operate a nanometric platform composed of phospholipids coated lipid silica/Au nanoparticles, while the other including tethered lipid bilayer reconstitution on a gold surface. The first approach needs the synthesis of nanometer sized gold/silica particles and that are subsequently coated with different phospholipids. The plasmonic properties provided by gold seeds are characterized and they are of utility to follow the interaction between lipids and/or proteins at the surface. Following of these interactions was also realized with electrophoretic mobility analysis. The second biomimetic device involves a membrane assembly on a gold surface. In a first time, a calmodulin layer is bound on the surface. In a second time, a lipid bilayer is assembled above the calmodulin layer by two approaches. In the first approach the lipid bilayer is anchored on the protein layer with chelators lipid and His-Tag bearing by the proteins. While, in the second approach, lipids are bound on the surface and tethered with the use of a cysteamin modified gold surface and functionalized lipids. The anchorage is realized by succinimidyl group and the tethering by polyethylene glycol group wearing by one kind of lipid. A sub-membrane reservoir is created under the lipid bilayer. The biomimetic model formation was followed by plasmonic resonance and fluorescence recovery after photobleaching. After their characterization the tethered model is validated by reconstitution of a particular mechanism: the CyaA toxin from Bordetella pertussis translocation.

Page generated in 0.0496 seconds