• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biocompósitos a partir de biopolietileno de alta densidade reforçado por fibras de curauá / Biocomposites from high density biopolyethylene and curaua fibers

Castro, Daniele Oliveira de 20 April 2010 (has links)
Neste trabalho, foram utilizadas fibras de curauá visando ação como reforço de matriz termoplástica de biopolietileno de alta densidade. O polietileno utilizado neste trabalho foi obtido pela polimerização de eteno, gerado a partir do etanol de cana de açúcar. Este polímero é também chamado de biopolietileno (BPEAD), por ser preparado a partir de material oriundo de fonte natural. Desta forma, pretendeu-se contribuir para com o desenvolvimento de materiais que, dentre outras propriedades, na sua produção, utilização e substituição, ocorra menor emissão de CO2 para a atmosfera, comparativamente a outros materiais. A superfície das fibras de curauá foi modificada via tratamento com ar ionizado, visando uma melhor impregnação da fibra pela matriz, o que possivelmente levaria a uma otimização da interface entre a matriz e a fibra. As propriedades dos compósitos reforçados com esta fibra (distribuição aleatória, comprimento de 1cm, diferentes proporções; materiais obtidos em misturador interno e por termoprensagem), foram comparadas com aquelas do reforçado com fibras não modificadas. Adicionalmente, polibutadieno líquido hidroxilado (PBHL) foi acrescentado à formulação do compósito, visando um aumento na resistência à propagação da trinca durante impacto. Os compósitos e as fibras foram caracterizados por várias técnicas, tais como, microscopia eletrônica de varredura (MEV), Calorimetria Exploratória Diferencial (DSC), Termogravimetria (TG), além, da caracterização dos compósitos quanto à Análise Térmica Dinâmico-Mecânica (DMTA), propriedades mecânicas (impacto e flexão) e absorção de água. A presença das fibras de curauá diminuiu algumas propriedades do BPEAD, como resistência ao impacto. A análise de DMTA mostrou que a presença de fibras leva a um material mais rígido. Pode-se considerar que a introdução de PBHL na formulação do material foi eficiente, levando a uma maior resistência ao impacto do compósito BPEAD/PBHL/fibra, quando comparado ao compósito BPEAD/fibra. A partir de 15% de PBHL adicionado ao compósito não houve mistura eficiente deste com os outros componentes, conforme evidenciado pelos resultados de resistência à flexão. As propriedades mecânicas dos materiais, no geral, não sofreram grande influência de as fibras terem sido tratadas com ar ionizado. Os resultados apontam no sentido que parâmetros de processo podem ser explorados, visando minimizar a degradação do polímero, além de trazerem outros inidicadores importantes, como que provavelmente uma borracha de maior massa molar média que a usada no presente trabalho possa apresentar uma ação mais significativa como modificadora de impacto; que fibras mais longas que aquelas consideradas, na mesma proporção em massa, podem ser testadas, já que fibras curtas implicam em grande número de pontas, as quais podem agir como concentradoras de tensão e prejudicar as propriedades mecânicas do compósito. / In this work, curaua fibers were used in the reinforcement of a high-density (HDPE) thermoplastic matrix. The polyethylene used in this study was obtained by polymerization of ethene produced from sugarcane ethanol. This polymer, also called high-density biopolyethylene (HDBPE), was prepared from a natural source material. The aim of the present study was to contribute to the development of materials that, among other properties, release less CO2 into the atmosphere as compared to other materials. The curaua fiber surface was modified by treatment with ionized air, seeking improved fiber impregnation by the matrix, which would possibly enhance the fiber/matrix interface adhesion. The properties of the composites reinforced with this fiber (randomly distributed, 1-cm long, different amounts, thermopressed materials) were compared with those reinforced with non-modified fibers. Additionally, liquid hydroxylated polybutadiene (LHPB) was added to the composite formulation, aiming at improving resistance to crack spreading during impact. The fibers and their composites were characterized by several techniques, such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetry (TG). The composites were also characterized by dynamic mechanical thermal analysis (DMTA), mechanical properties (flexural and impact strength), and water absorption. The presence of curaua fibers reduced some of the properties of the HDBPE, such as flexural and impact strength. DMTA showed that the presence of the fibers results in a more rigid material. The addition of LHPB to the formulation was efficient, leading to greater impact strength for the HDBPE/LHPB/fiber composite, as compared to the HDBPE/fiber composite. The addition of over 15% LHPB to the composite resulted in a poor mixture of the component, as evidenced by the flexural strength. The mechanical properties of the materials were not greatly influenced by their reinforcement with fibers treated with ionized air as a whole, showing that the process parameters can be further investigated to minimize the degradation of the materials. The use of a rubber with a higher average molar mass that the one currently used may have a greater effect on the impact strength. Longer fibers in equal mass proportions to those used in the present study can be tested, since shorter fibers mean a larger number of ends, which may act as stress concentrators and worsen some mechanical properties of the composite.
2

Desenvolvimento de blendas de biopolietilenos verdes PEAD/PELBD.

OLIVEIRA, Akidauana Dandara Brito de. 09 July 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-07-09T17:24:53Z No. of bitstreams: 1 AKIDAUANA DANDARA BRITO DE OLIVEIRA - DISSERTAÇÃO (PPGCEMat) 2015.pdf: 4346677 bytes, checksum: 2518460fd25d05c04a1b089149325a5d (MD5) / Made available in DSpace on 2018-07-09T17:24:53Z (GMT). No. of bitstreams: 1 AKIDAUANA DANDARA BRITO DE OLIVEIRA - DISSERTAÇÃO (PPGCEMat) 2015.pdf: 4346677 bytes, checksum: 2518460fd25d05c04a1b089149325a5d (MD5) Previous issue date: 2015-02-26 / CNPq / Os biopolímeros são polímeros ou copolímeros produzidos a partir de matériasprimas de fontes renováveis, como: milho, cana-de-açúcar, celulose, quitina, e outras. Já os biopolímeros verdes também são sintetizados a partir de matériaprima de fontes renováveis, porém, não são biodegradáveis e mantêm as mesmas características dos polímeros obtidos de fontes fósseis. Um exemplo de polímero verde é o polietileno verde (PE verde). Este trabalho teve como objetivo principal desenvolver blendas poliméricas a partir de dois biopolietilenos verdes (BioPEAD/BioPELBD) e avaliar o efeito da composição nas diversas propriedades e morfologia. As blendas foram preparadas em extrusora dupla rosca corrotacional, seguida da moldagem por injeção e caracterizadas a partir de medidas reológicas sob taxa de cisalhamento em regime permanente e oscilatório , análise das propriedades mecânicas, Difração de raios X (DRX), Microscopia Eletrônica de Varredura (MEV), análise térmica por calorimetria exploratória diferencial (DSC) e termogravimétrica (TG). Dos resultados obtidos quanto ao comportamento reológico, verificou-se que a viscosidade aparente obedeceu à regra da aditividade e, a viscosidade e o grau de pseudoplasticidade, variaram proporcionalmente com a concentração. O resultado do comportamento reológico em regime viscoelástico linear mostrou que as blendas apresentaram um aumento no valor da viscosidade complexa a baixas freqüências (região de platô) e com valores intermediários para as blendas, quando comparados ao BioPEAD e BioPELBD. The comportamento semelhante ao obtido em regime permanente, sugerindo a Regra de Cox-Merz. Os ensaios reológicos também sugeriram que o BioPEAD e BioPELBD foram parcialmente miscíveis no estado fundido. Os resultados das propriedades mecânicas mostraram que aumento do teor de BioPELBD diminuiu a resistência à tração e o módulo de elasticidade. Por outro lado, o alongamento até a ruptura, e, por conseguinte a tenacidade, e a resistência ao impacto aumentaram substancialmente. Os resultados obtidos por DRX mostraram que a cristalinida do BioPEAD diminuiu com o aumento do teor de BioPELBD nas blendas BioPEAD/BIOPELBD. A partir das fotomicrografias obtidas por MEV, observou-se que o aumento do teor de BioPELBD nas blendas, reduz significativamente a quantidade de partículas da fase dispersa sendo até imperceptível visualizá-las quando a concentração de 50% em peso de BioPELBD foi alcançada, sugerindo co-continuidade de fases. Os resultados de DSC mostraram uma redução no valor do pico da temperatura de fusão à medida que se aumentou o teor de BioPELBD, indicando uma diminuição do tamanho dos cristalitos e, por conseguinte, uma redução na cristalinidade das blendas. A partir dos resultados de TG, observouse que as blendas exibiram estabilidade térmica mais elevadas do que para o BioPEAD e BioPELBD. / Biopolymers are polymers or copolymers made from raw materials of renewable sources, such as corn, sugarcane, sugar, cellulose, chitin and others. Green biopolymers are also synthesized from renewable raw materials, however, are not biodegradable and maintain the same characteristics of the polymers obtained from fossil sources. An example of green polymer is biopolyethylene (BioPE). The aim of this work is to develop polymer blends from two types of biopolyethylene (Bio High Density Polyethylene - BioPEAD / Bio Linear Low Density Polyethylene - BioPELBD) and to evaluate the effect of the composition on various properties and morphology. The BioPEAD/BioPELBD blends were prepared by extrusion, in a co-rotational twin-screw extruder, followed by injection molding and characterized by rheological measurements under steady and oscillatory shear flows, mechanical properties, X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM), Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC). From the rheological measurements under steady shear flow, it was found that the apparent viscosity followed the rule of additivity, and the viscosity and degree of pseudoplasticity varied proportionally with concentration. Rheological measurements under oscillatory shear flow showed that the complex viscosity values of the blends increased at low frequencies (plateau region) and intermediate values were obtained for the blends, when compared to neat BioPEAD and BioPELBD. The values of the viscosity obtained in the oscillatory shear flow were similar to those obtained under steady shear flow, suggesting that the Cox-Merz rule was obeyed. The rheological measurements also suggested that BioPEAD and BioPELBD were partially miscible. The mechanical properties results showed that the increase in BioPELBD content decreased the tensile strength and elastic modulus. On the other hand, the elongation to break, and thus the toughness, and the impact strength have substantially increased. The XRD results showed that the crystallinity of BioPEAD decreased with the increase in the PELBD content in the BIOPEAD/BioPELBD blends. From SEM micrographs, it was observed that with the increase in the BioPELBD content the amount of dispersed phase particles was substantially decreased, being imperceptible when the concentration of 50% of BioPELBD was reached, suggesting phase cocontinuity. DSC results showed a reduction of the melting temperature peak value as BioPELBD content was increased, indicating a decrease in the crystallite size and therefore a reduction in the crystallinity of the blends. From the TG results, it was observed that the blends exhibited higher thermal stability than that of both BioPEAD and BioPELBD.
3

Biocompósitos a partir de biopolietileno de alta densidade reforçado por fibras de curauá / Biocomposites from high density biopolyethylene and curaua fibers

Daniele Oliveira de Castro 20 April 2010 (has links)
Neste trabalho, foram utilizadas fibras de curauá visando ação como reforço de matriz termoplástica de biopolietileno de alta densidade. O polietileno utilizado neste trabalho foi obtido pela polimerização de eteno, gerado a partir do etanol de cana de açúcar. Este polímero é também chamado de biopolietileno (BPEAD), por ser preparado a partir de material oriundo de fonte natural. Desta forma, pretendeu-se contribuir para com o desenvolvimento de materiais que, dentre outras propriedades, na sua produção, utilização e substituição, ocorra menor emissão de CO2 para a atmosfera, comparativamente a outros materiais. A superfície das fibras de curauá foi modificada via tratamento com ar ionizado, visando uma melhor impregnação da fibra pela matriz, o que possivelmente levaria a uma otimização da interface entre a matriz e a fibra. As propriedades dos compósitos reforçados com esta fibra (distribuição aleatória, comprimento de 1cm, diferentes proporções; materiais obtidos em misturador interno e por termoprensagem), foram comparadas com aquelas do reforçado com fibras não modificadas. Adicionalmente, polibutadieno líquido hidroxilado (PBHL) foi acrescentado à formulação do compósito, visando um aumento na resistência à propagação da trinca durante impacto. Os compósitos e as fibras foram caracterizados por várias técnicas, tais como, microscopia eletrônica de varredura (MEV), Calorimetria Exploratória Diferencial (DSC), Termogravimetria (TG), além, da caracterização dos compósitos quanto à Análise Térmica Dinâmico-Mecânica (DMTA), propriedades mecânicas (impacto e flexão) e absorção de água. A presença das fibras de curauá diminuiu algumas propriedades do BPEAD, como resistência ao impacto. A análise de DMTA mostrou que a presença de fibras leva a um material mais rígido. Pode-se considerar que a introdução de PBHL na formulação do material foi eficiente, levando a uma maior resistência ao impacto do compósito BPEAD/PBHL/fibra, quando comparado ao compósito BPEAD/fibra. A partir de 15% de PBHL adicionado ao compósito não houve mistura eficiente deste com os outros componentes, conforme evidenciado pelos resultados de resistência à flexão. As propriedades mecânicas dos materiais, no geral, não sofreram grande influência de as fibras terem sido tratadas com ar ionizado. Os resultados apontam no sentido que parâmetros de processo podem ser explorados, visando minimizar a degradação do polímero, além de trazerem outros inidicadores importantes, como que provavelmente uma borracha de maior massa molar média que a usada no presente trabalho possa apresentar uma ação mais significativa como modificadora de impacto; que fibras mais longas que aquelas consideradas, na mesma proporção em massa, podem ser testadas, já que fibras curtas implicam em grande número de pontas, as quais podem agir como concentradoras de tensão e prejudicar as propriedades mecânicas do compósito. / In this work, curaua fibers were used in the reinforcement of a high-density (HDPE) thermoplastic matrix. The polyethylene used in this study was obtained by polymerization of ethene produced from sugarcane ethanol. This polymer, also called high-density biopolyethylene (HDBPE), was prepared from a natural source material. The aim of the present study was to contribute to the development of materials that, among other properties, release less CO2 into the atmosphere as compared to other materials. The curaua fiber surface was modified by treatment with ionized air, seeking improved fiber impregnation by the matrix, which would possibly enhance the fiber/matrix interface adhesion. The properties of the composites reinforced with this fiber (randomly distributed, 1-cm long, different amounts, thermopressed materials) were compared with those reinforced with non-modified fibers. Additionally, liquid hydroxylated polybutadiene (LHPB) was added to the composite formulation, aiming at improving resistance to crack spreading during impact. The fibers and their composites were characterized by several techniques, such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetry (TG). The composites were also characterized by dynamic mechanical thermal analysis (DMTA), mechanical properties (flexural and impact strength), and water absorption. The presence of curaua fibers reduced some of the properties of the HDBPE, such as flexural and impact strength. DMTA showed that the presence of the fibers results in a more rigid material. The addition of LHPB to the formulation was efficient, leading to greater impact strength for the HDBPE/LHPB/fiber composite, as compared to the HDBPE/fiber composite. The addition of over 15% LHPB to the composite resulted in a poor mixture of the component, as evidenced by the flexural strength. The mechanical properties of the materials were not greatly influenced by their reinforcement with fibers treated with ionized air as a whole, showing that the process parameters can be further investigated to minimize the degradation of the materials. The use of a rubber with a higher average molar mass that the one currently used may have a greater effect on the impact strength. Longer fibers in equal mass proportions to those used in the present study can be tested, since shorter fibers mean a larger number of ends, which may act as stress concentrators and worsen some mechanical properties of the composite.

Page generated in 0.0551 seconds