• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 12
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biocompósitos de gelatina de pele e hidroxiapatita de escamas de resíduos do beneficiamento de tilápia do Nilo (Oreochromis niloticus) / Biocomposites of skin gelatine and hydroxyapatite of waste scales from the processing of Nile tilapia (Oreochromis niloticus)

Melo, Edla Freire de January 2017 (has links)
MELO, Edla Freire. Biocompósitos de gelatina de pele e hidroxiapatita de escamas de resíduos do beneficiamento de tilápia do Nilo (Oreochromis niloticus). 2017. 90 f. Dissertação (Mestrado em Química)- Universidade Federal do Ceará, Fortaleza,2017. / Submitted by Celia Sena (celiasena@dqoi.ufc.br) on 2017-06-05T18:14:03Z No. of bitstreams: 1 2017_dis_efmelo.pdf: 3063244 bytes, checksum: d6df394a12cbc46c6d8d227a642a084a (MD5) / Approved for entry into archive by Jairo Viana (jairo@ufc.br) on 2017-06-05T18:44:30Z (GMT) No. of bitstreams: 1 2017_dis_efmelo.pdf: 3063244 bytes, checksum: d6df394a12cbc46c6d8d227a642a084a (MD5) / Made available in DSpace on 2017-06-05T18:44:30Z (GMT). No. of bitstreams: 1 2017_dis_efmelo.pdf: 3063244 bytes, checksum: d6df394a12cbc46c6d8d227a642a084a (MD5) Previous issue date: 2017 / Compounds based on calcium phosphate, among them hydroxyapatite, record several technological applications, such as biocomposites. Hydroxyapatite is widely used as biomaterial because of its excellent biocompatibility. Scales of Nile tilapia (Oreochromis niloticus) are composed of an organic fraction (collagen) and another inorganic (mainly phosphates). The skins, they are great sources for extracting collagen/gelatine. The objective of this work was the extraction and characterization of hydroxyapatite of fish skin and scales, gelatine for the production of biocomposite as an alternative for the recovery of this residue. An alkaline heat treatment was used to obtain hydroxyapatite and alkali/acid for gelatin. The scale was characterized in terms of ash, moisture, lipids, proteins and minerals. The obtained materials were characterized by differential scanning calorimetry (DSC), thermogravimetry (TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), spectroscopy of Dispersive energy (EDS), gel permeation chromatography (GPC) and isoelectric point of gelatin. The presence of hydroxyapatite in the scale was demonstrated not only by the analysis of minerals (Ca and P) and EDS with intense peaks, but also by the ash content of 28.39%, confirming the mineral phase. In the SEM, the mineral particles appear interconnected between the collagenous fibers of the scales and the typical FTIR bands at 567 and 603 cm-1, characteristic of P-O vibrations, 1045 cm-1, may be associated with P-O bonding in PO43- groups, and The bands of 3440 cm-1 and 1645 cm-1 are typical of the O-H linkages. In addition, the XRD confirms the crystalline phase of hydroxyapatite, reinforcing that the scale is a source of the material. The characterization of gelatine also shows that it has a good molecular weight according to the source of the production, just as the FTIR bands confirm the presence of typical amide I, II and III constituents. The isoelectric point found was PI = pH = 8.6. The treatments present potential for obtaining hydroxyapatite and gelatine, as well as development of biocomposite. / Compostos à base de fosfato de cálcio, dentre esses a hidroxiapatita, registram diversas aplicações tecnológicas, a exemplo de biocompósitos. A hidroxiapatita é muito utilizada como biomaterial devido à sua excelente biocompatibilidade. Escamas de tilápia do Nilo (Oreochromis niloticus) são compostas de uma fração orgânica (colágeno) e outra inorgânica (principalmente fosfatos). Assim como as peles, são ótimas fontes para extração de colágeno/gelatina. O objetivo deste trabalho consistiu na extração e caracterização de hidroxiapatita de escamas e gelatina da pele de pescado para produção de biocompósito como alternativa de aproveitamento desse resíduo. Empregou-se um tratamento térmico alcalino para a obtenção da hidroxiapatita e álcali/ácido para a gelatina. A escama foi caracterizada em termos de cinzas, umidade, lipídeos, proteínas e minerais. Os materiais obtidos foram caracterizados por técnicas de calorimetria exploratória diferencial (DSC), termogravimetria (TG), espectroscopia de infravermelho com transformada de Fourier (FTIR), difração de raio-x (DRX), microscopia eletrônica de varredura (MEV), espectroscopia de energia dispersiva (EDS), cromatografia por permeação em gel (GPC) e ponto isoelétrico da gelatina. A presença de hidroxiapatita na escama foi demostrada não só pela análise de minerais (Ca e P) e EDS com picos intensos, mas também pelo teor de cinzas de 28,39%, confirmando a fase mineral. No MEV, as partículas minerais aparecem interligadas entre as fibras colagenosas das escamas e as bandas típicas do FTIR em 567 e em 603 cm-1, característicos de vibrações P-O, 1045 cm-1, podem estar associadas à ligação P-O em grupos PO43- , e as bandas de 3440 cm-1 e em 1645 cm-1 são típicas das ligações O-H. Além disso, o DRX confirma a fase cristalina de hidroxiapatita, reforçando que a escama é uma fonte do material. A caracterização da gelatina também mostra que possui peso molecular considerado bom, de acordo com a fonte de obtenção, assim como as bandas de FTIR confirmam presença de contituintes típicos de amida I, II e III. O ponto isoelétrico encontrado foi PI = pH = 8,6. Os tratamentos apresentam potencial para obtenção de hidroxiapatita e gelatina, assim como desenvolvimento de biocompósito.
2

Biocompósitos a partir de biopolietileno de alta densidade reforçado por fibras de curauá / Biocomposites from high density biopolyethylene and curaua fibers

Castro, Daniele Oliveira de 20 April 2010 (has links)
Neste trabalho, foram utilizadas fibras de curauá visando ação como reforço de matriz termoplástica de biopolietileno de alta densidade. O polietileno utilizado neste trabalho foi obtido pela polimerização de eteno, gerado a partir do etanol de cana de açúcar. Este polímero é também chamado de biopolietileno (BPEAD), por ser preparado a partir de material oriundo de fonte natural. Desta forma, pretendeu-se contribuir para com o desenvolvimento de materiais que, dentre outras propriedades, na sua produção, utilização e substituição, ocorra menor emissão de CO2 para a atmosfera, comparativamente a outros materiais. A superfície das fibras de curauá foi modificada via tratamento com ar ionizado, visando uma melhor impregnação da fibra pela matriz, o que possivelmente levaria a uma otimização da interface entre a matriz e a fibra. As propriedades dos compósitos reforçados com esta fibra (distribuição aleatória, comprimento de 1cm, diferentes proporções; materiais obtidos em misturador interno e por termoprensagem), foram comparadas com aquelas do reforçado com fibras não modificadas. Adicionalmente, polibutadieno líquido hidroxilado (PBHL) foi acrescentado à formulação do compósito, visando um aumento na resistência à propagação da trinca durante impacto. Os compósitos e as fibras foram caracterizados por várias técnicas, tais como, microscopia eletrônica de varredura (MEV), Calorimetria Exploratória Diferencial (DSC), Termogravimetria (TG), além, da caracterização dos compósitos quanto à Análise Térmica Dinâmico-Mecânica (DMTA), propriedades mecânicas (impacto e flexão) e absorção de água. A presença das fibras de curauá diminuiu algumas propriedades do BPEAD, como resistência ao impacto. A análise de DMTA mostrou que a presença de fibras leva a um material mais rígido. Pode-se considerar que a introdução de PBHL na formulação do material foi eficiente, levando a uma maior resistência ao impacto do compósito BPEAD/PBHL/fibra, quando comparado ao compósito BPEAD/fibra. A partir de 15% de PBHL adicionado ao compósito não houve mistura eficiente deste com os outros componentes, conforme evidenciado pelos resultados de resistência à flexão. As propriedades mecânicas dos materiais, no geral, não sofreram grande influência de as fibras terem sido tratadas com ar ionizado. Os resultados apontam no sentido que parâmetros de processo podem ser explorados, visando minimizar a degradação do polímero, além de trazerem outros inidicadores importantes, como que provavelmente uma borracha de maior massa molar média que a usada no presente trabalho possa apresentar uma ação mais significativa como modificadora de impacto; que fibras mais longas que aquelas consideradas, na mesma proporção em massa, podem ser testadas, já que fibras curtas implicam em grande número de pontas, as quais podem agir como concentradoras de tensão e prejudicar as propriedades mecânicas do compósito. / In this work, curaua fibers were used in the reinforcement of a high-density (HDPE) thermoplastic matrix. The polyethylene used in this study was obtained by polymerization of ethene produced from sugarcane ethanol. This polymer, also called high-density biopolyethylene (HDBPE), was prepared from a natural source material. The aim of the present study was to contribute to the development of materials that, among other properties, release less CO2 into the atmosphere as compared to other materials. The curaua fiber surface was modified by treatment with ionized air, seeking improved fiber impregnation by the matrix, which would possibly enhance the fiber/matrix interface adhesion. The properties of the composites reinforced with this fiber (randomly distributed, 1-cm long, different amounts, thermopressed materials) were compared with those reinforced with non-modified fibers. Additionally, liquid hydroxylated polybutadiene (LHPB) was added to the composite formulation, aiming at improving resistance to crack spreading during impact. The fibers and their composites were characterized by several techniques, such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetry (TG). The composites were also characterized by dynamic mechanical thermal analysis (DMTA), mechanical properties (flexural and impact strength), and water absorption. The presence of curaua fibers reduced some of the properties of the HDBPE, such as flexural and impact strength. DMTA showed that the presence of the fibers results in a more rigid material. The addition of LHPB to the formulation was efficient, leading to greater impact strength for the HDBPE/LHPB/fiber composite, as compared to the HDBPE/fiber composite. The addition of over 15% LHPB to the composite resulted in a poor mixture of the component, as evidenced by the flexural strength. The mechanical properties of the materials were not greatly influenced by their reinforcement with fibers treated with ionized air as a whole, showing that the process parameters can be further investigated to minimize the degradation of the materials. The use of a rubber with a higher average molar mass that the one currently used may have a greater effect on the impact strength. Longer fibers in equal mass proportions to those used in the present study can be tested, since shorter fibers mean a larger number of ends, which may act as stress concentrators and worsen some mechanical properties of the composite.
3

Biocompósitos a partir de biopolietileno de alta densidade reforçado por fibras de curauá / Biocomposites from high density biopolyethylene and curaua fibers

Daniele Oliveira de Castro 20 April 2010 (has links)
Neste trabalho, foram utilizadas fibras de curauá visando ação como reforço de matriz termoplástica de biopolietileno de alta densidade. O polietileno utilizado neste trabalho foi obtido pela polimerização de eteno, gerado a partir do etanol de cana de açúcar. Este polímero é também chamado de biopolietileno (BPEAD), por ser preparado a partir de material oriundo de fonte natural. Desta forma, pretendeu-se contribuir para com o desenvolvimento de materiais que, dentre outras propriedades, na sua produção, utilização e substituição, ocorra menor emissão de CO2 para a atmosfera, comparativamente a outros materiais. A superfície das fibras de curauá foi modificada via tratamento com ar ionizado, visando uma melhor impregnação da fibra pela matriz, o que possivelmente levaria a uma otimização da interface entre a matriz e a fibra. As propriedades dos compósitos reforçados com esta fibra (distribuição aleatória, comprimento de 1cm, diferentes proporções; materiais obtidos em misturador interno e por termoprensagem), foram comparadas com aquelas do reforçado com fibras não modificadas. Adicionalmente, polibutadieno líquido hidroxilado (PBHL) foi acrescentado à formulação do compósito, visando um aumento na resistência à propagação da trinca durante impacto. Os compósitos e as fibras foram caracterizados por várias técnicas, tais como, microscopia eletrônica de varredura (MEV), Calorimetria Exploratória Diferencial (DSC), Termogravimetria (TG), além, da caracterização dos compósitos quanto à Análise Térmica Dinâmico-Mecânica (DMTA), propriedades mecânicas (impacto e flexão) e absorção de água. A presença das fibras de curauá diminuiu algumas propriedades do BPEAD, como resistência ao impacto. A análise de DMTA mostrou que a presença de fibras leva a um material mais rígido. Pode-se considerar que a introdução de PBHL na formulação do material foi eficiente, levando a uma maior resistência ao impacto do compósito BPEAD/PBHL/fibra, quando comparado ao compósito BPEAD/fibra. A partir de 15% de PBHL adicionado ao compósito não houve mistura eficiente deste com os outros componentes, conforme evidenciado pelos resultados de resistência à flexão. As propriedades mecânicas dos materiais, no geral, não sofreram grande influência de as fibras terem sido tratadas com ar ionizado. Os resultados apontam no sentido que parâmetros de processo podem ser explorados, visando minimizar a degradação do polímero, além de trazerem outros inidicadores importantes, como que provavelmente uma borracha de maior massa molar média que a usada no presente trabalho possa apresentar uma ação mais significativa como modificadora de impacto; que fibras mais longas que aquelas consideradas, na mesma proporção em massa, podem ser testadas, já que fibras curtas implicam em grande número de pontas, as quais podem agir como concentradoras de tensão e prejudicar as propriedades mecânicas do compósito. / In this work, curaua fibers were used in the reinforcement of a high-density (HDPE) thermoplastic matrix. The polyethylene used in this study was obtained by polymerization of ethene produced from sugarcane ethanol. This polymer, also called high-density biopolyethylene (HDBPE), was prepared from a natural source material. The aim of the present study was to contribute to the development of materials that, among other properties, release less CO2 into the atmosphere as compared to other materials. The curaua fiber surface was modified by treatment with ionized air, seeking improved fiber impregnation by the matrix, which would possibly enhance the fiber/matrix interface adhesion. The properties of the composites reinforced with this fiber (randomly distributed, 1-cm long, different amounts, thermopressed materials) were compared with those reinforced with non-modified fibers. Additionally, liquid hydroxylated polybutadiene (LHPB) was added to the composite formulation, aiming at improving resistance to crack spreading during impact. The fibers and their composites were characterized by several techniques, such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetry (TG). The composites were also characterized by dynamic mechanical thermal analysis (DMTA), mechanical properties (flexural and impact strength), and water absorption. The presence of curaua fibers reduced some of the properties of the HDBPE, such as flexural and impact strength. DMTA showed that the presence of the fibers results in a more rigid material. The addition of LHPB to the formulation was efficient, leading to greater impact strength for the HDBPE/LHPB/fiber composite, as compared to the HDBPE/fiber composite. The addition of over 15% LHPB to the composite resulted in a poor mixture of the component, as evidenced by the flexural strength. The mechanical properties of the materials were not greatly influenced by their reinforcement with fibers treated with ionized air as a whole, showing that the process parameters can be further investigated to minimize the degradation of the materials. The use of a rubber with a higher average molar mass that the one currently used may have a greater effect on the impact strength. Longer fibers in equal mass proportions to those used in the present study can be tested, since shorter fibers mean a larger number of ends, which may act as stress concentrators and worsen some mechanical properties of the composite.
4

Desenvolvimento de biocompósitos cerâmicos infiltrados por vidro para aplicação em restauração dentária

Chimanski, Afonso January 2013 (has links)
Orientador: Humberto Naoyuki Yoshimura / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Nanociências e Materiais Avançados, 2013
5

Biocompósitos a partir de \"polietileno verde\", óleos vegetais, macro e nano fibras de curauá / Biocomposites from \"green polyethylene\", vegetable oils, macro and nano curaua fibers

Castro, Daniele Oliveira de 30 May 2014 (has links)
O polietileno de alta densidade utilizado neste trabalho foi obtido em escala industrial pela polimerização de eteno, gerado a partir do etanol de cana de açúcar. Este polímero é também chamado de biopolietileno (BPEAD), por ser preparado a partir de material oriundo de fonte natural. O BPEAD foi usado como matriz em compósitos reforçados por fibras de curauá em proporções em massa variando de 5 a 20%, 1 cm de comprimento. Óleo de mamona (CO), óleo de canola (CA), óleo de linhaça epoxidado (OLE) e óleo de soja epoxidado (OSE) foram usados na preparação dos compósitos (5, 10, 15 e 20%) visando atuação como agentes compatibilizantes, uma vez que o CO, CA, OLE e OSE têm cadeias hidrocarbônicas com afinidade pelo biopolietileno, e grupos hidroxilas com afinidades pelos grupos polares presentes nas fibras. Os compósitos foram caracterizados por microscopia eletrônica de varredura (MEV), Calorimetria Exploratória Diferencial (DSC), Termogravimetria (TG), Análise Dinâmico-Mecânica (DMA) e propriedades mecânicas (impacto e flexão). Os resultados de impacto, flexão e DMA apresentados pelos compósitos mostraram que a incorporação dos óleos nas diferentes composições, principalmente CO, no geral levou a melhores propriedades quando comparados aos compósitos BPEAD/Fibra, indicando uma possível ação dos óleos como compatibilizante na interface fibra/matriz. O compósito BPEAD/15%CO/15%Fibra apresentou uma maior resistência ao impacto (280 J m-1) se comparado ao BPEAD (234 J m-1), indicando o efeito compatibilizante do CO. As propriedades de compósitos (BPEAD/5%CO, CA, OSE ou OLE/10%Fibra) reforçados com curauá (3mm), processados em misturador interno e termoprensados foram comparadas com aqueles processados por extrusão e moldados por injeção. A resistência ao impacto dos compósitos processados via extrusão BPEAD/CO (287 J m-1), CA (240 J m-1) ou OSE/Fibra (222 J m-1) foi maior quando comparada aos compósitos processados via misturador interno BPEAD/CO (114 J m-1), CA (123 J m-1) ou OSE/Fibra (110 J m-1). A análise de DMA também mostrou que o compósito BPEAD/5%CO/10%Fibra preparado por extrusão/injeção apresentou maior módulo de armazenamento (E´) a 30°C de 1660 MPa, enquanto que o compósito processado via misturador interno apresentou E´ de 1219 MPa. Comparando as propriedades mecânicas dos compósitos processados por extrusão/injeção com a dos processados por misturador interno Haake/termoprensagem, conclui-se que extrusão/injeção é um processo mais eficiente para a preparação de compósitos de fibras curtas. O presente estudo também avaliou o potencial de aplicação de nanocristais de celulose (NCC) em filmes baseados em BPEAD. NCCs foram obtidos a partir da hidrólise ácida da fibra de curauá, e foram utilizados (3, 6 e 9 %) na preparação de filmes de BPEAD, visando à obtenção de nanocompósitos. Os nanocompósitos reforçados com nanocristais de curauá foram processados por extrusão, também usando CO (3, 6 e 9%), visando avaliar a ação do mesmo como agente de dispersão de NCC na matriz apolar de BPEAD. A partir dos resultados obtidos para estes filmes, a porcentagem de NCC foi fixada em 3%, e 3% como porcentagem de óleo vegetal, por terem sido estas as condições que levaram ao melhor conjunto de resultados. Além de CO, OSE e OLE também foram usados e, além do processamento extrusão, extrusão/termoprensagem também foi considerado, a fim de comparar as propriedades obtidas nos dois processamentos. Os filmes foram caracterizados por calorimetria exploratória diferencial, termogravimetria, DMA, ensaio de tração, MEV e reologia. A análise de DMA mostrou que a presença de NCC leva a um material mais rígido, e o uso de óleos vegetais na preparação de filmes, levou a uma distribuição mais homogênea dos NCCs na matriz de BPEAD e a uma melhor adesão na interface, evidenciando o efeito compatibilizante dos óleos. As propriedades óticas dos nanocompósitos indicaram que a presença dos óleos levou a filmes menos opacos, para ambos os tipos de processamentos usados. Com relação aos diferentes processamentos usados na preparação dos filmes baseados em BPEAD, óleos e nanocristais, o melhor conjunto de resultados, com destaque para aqueles obtidos no ensaio de tração, foram resultantes do processamento via extrusão/termoprensagem, indicando que este processamento deve favorecer a dispersão de NCCs na matriz de BPEAD. Os resultados desse trabalho apontaram para boas perspectivas para o uso de nanocristais de celulose em filmes baseados em BPEAD (ou PEAD), utilizando óleos vegetais como compatibilizantes e também mostraram que é possível obter melhorias nas propriedades dos nanocompósitos através de processos mais adequados para a escala industrial, como a extrusão. No presente estudo, contribuiu-se para com o desenvolvimento de materiais que, dentre outras propriedades, na sua produção, utilização e substituição, ocorra menor emissão de CO2 para a atmosfera, comparativamente a outros materiais. / The high-density polyethylene used in this work was obtained on an industrial scale by polymerization of ethylene derived from sugar cane ethanol. This polymer is also called biopolyethylene (HDBPE), as it is a material derived from a renewable resource. HDBPE was used as a polymer matrix in composites reinforced by curaua fibers containing 5, 10, 15 and 20 wt%, 1-cm long. Castor oil (CO), canola oil (CA), epoxidized linseed oil (ELO) and epoxidized soybean linseed oil (ESO) were used in the preparation of composites (5, 10, 15 e 20 wt%) aiming to act as a coupling agent, since CO, CA, ESO and ELO have hydrocarbon chains with affinity for polyethylene and hydroxyl groups that can interact with polar groups on the fibers. The composites were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetryc analysis (TG), dynamic mechanical analysis (DMA) and mechanical properties (flexural and impact strength). The results of impact, flexural strength and DMA presented by composites showed that the incorporation of oils in various compositions, particularly CO, in general has led to improved properties when compared to the composite HDBPE/Fiber, thus indicating a possible action of the oil as a compatibilizer in the fiber/matrix interface. The composite HDBPE/15%CO/15%Fiber had a higher impact strength (280 J m-1) compared to HDBPE (234 J m-1), indicating the compatibilizer effect of CO. The properties of composites (HDBPE/5%CO, CA, ESO or ELO/10%Fiber) reinforced with curaua (3mm) and prepared using an internal mixer (Haake) followed by thermopress molding were compared with those prepared by extrusion and was molded by injection. The properties of composites (HDBPE/5%CO, CA, ESO or ELO/10%Fiber) reinforced with curaua (3mm), prepared using an internal mixer (Haake) followed by thermopress molding were compared with those prepared by extrusion and molded by injection. The impact strength of composites processed via extrusion HDBPE/CO (287 J m-1), CA (240 J m-1) or OSE / fiber (222 J m-1) was higher when compared to composites processed via internal mixer HDBPE/CO (114 J m-1), CA (123 J m-1) or OSE/Fiber (110 J m-1). DMA analysis also showed that the composite HDBPE/5%CO/10%Fiber prepared by extrusion/injection showed higher storage modulus (E\') at 30°C of 1660 MPa, while the composite processed by internal mixer presented an E\' of 1219 MPa. Comparing the mechanical properties of the composites
6

Biocompósitos a partir de \"polietileno verde\", óleos vegetais, macro e nano fibras de curauá / Biocomposites from \"green polyethylene\", vegetable oils, macro and nano curaua fibers

Daniele Oliveira de Castro 30 May 2014 (has links)
O polietileno de alta densidade utilizado neste trabalho foi obtido em escala industrial pela polimerização de eteno, gerado a partir do etanol de cana de açúcar. Este polímero é também chamado de biopolietileno (BPEAD), por ser preparado a partir de material oriundo de fonte natural. O BPEAD foi usado como matriz em compósitos reforçados por fibras de curauá em proporções em massa variando de 5 a 20%, 1 cm de comprimento. Óleo de mamona (CO), óleo de canola (CA), óleo de linhaça epoxidado (OLE) e óleo de soja epoxidado (OSE) foram usados na preparação dos compósitos (5, 10, 15 e 20%) visando atuação como agentes compatibilizantes, uma vez que o CO, CA, OLE e OSE têm cadeias hidrocarbônicas com afinidade pelo biopolietileno, e grupos hidroxilas com afinidades pelos grupos polares presentes nas fibras. Os compósitos foram caracterizados por microscopia eletrônica de varredura (MEV), Calorimetria Exploratória Diferencial (DSC), Termogravimetria (TG), Análise Dinâmico-Mecânica (DMA) e propriedades mecânicas (impacto e flexão). Os resultados de impacto, flexão e DMA apresentados pelos compósitos mostraram que a incorporação dos óleos nas diferentes composições, principalmente CO, no geral levou a melhores propriedades quando comparados aos compósitos BPEAD/Fibra, indicando uma possível ação dos óleos como compatibilizante na interface fibra/matriz. O compósito BPEAD/15%CO/15%Fibra apresentou uma maior resistência ao impacto (280 J m-1) se comparado ao BPEAD (234 J m-1), indicando o efeito compatibilizante do CO. As propriedades de compósitos (BPEAD/5%CO, CA, OSE ou OLE/10%Fibra) reforçados com curauá (3mm), processados em misturador interno e termoprensados foram comparadas com aqueles processados por extrusão e moldados por injeção. A resistência ao impacto dos compósitos processados via extrusão BPEAD/CO (287 J m-1), CA (240 J m-1) ou OSE/Fibra (222 J m-1) foi maior quando comparada aos compósitos processados via misturador interno BPEAD/CO (114 J m-1), CA (123 J m-1) ou OSE/Fibra (110 J m-1). A análise de DMA também mostrou que o compósito BPEAD/5%CO/10%Fibra preparado por extrusão/injeção apresentou maior módulo de armazenamento (E´) a 30°C de 1660 MPa, enquanto que o compósito processado via misturador interno apresentou E´ de 1219 MPa. Comparando as propriedades mecânicas dos compósitos processados por extrusão/injeção com a dos processados por misturador interno Haake/termoprensagem, conclui-se que extrusão/injeção é um processo mais eficiente para a preparação de compósitos de fibras curtas. O presente estudo também avaliou o potencial de aplicação de nanocristais de celulose (NCC) em filmes baseados em BPEAD. NCCs foram obtidos a partir da hidrólise ácida da fibra de curauá, e foram utilizados (3, 6 e 9 %) na preparação de filmes de BPEAD, visando à obtenção de nanocompósitos. Os nanocompósitos reforçados com nanocristais de curauá foram processados por extrusão, também usando CO (3, 6 e 9%), visando avaliar a ação do mesmo como agente de dispersão de NCC na matriz apolar de BPEAD. A partir dos resultados obtidos para estes filmes, a porcentagem de NCC foi fixada em 3%, e 3% como porcentagem de óleo vegetal, por terem sido estas as condições que levaram ao melhor conjunto de resultados. Além de CO, OSE e OLE também foram usados e, além do processamento extrusão, extrusão/termoprensagem também foi considerado, a fim de comparar as propriedades obtidas nos dois processamentos. Os filmes foram caracterizados por calorimetria exploratória diferencial, termogravimetria, DMA, ensaio de tração, MEV e reologia. A análise de DMA mostrou que a presença de NCC leva a um material mais rígido, e o uso de óleos vegetais na preparação de filmes, levou a uma distribuição mais homogênea dos NCCs na matriz de BPEAD e a uma melhor adesão na interface, evidenciando o efeito compatibilizante dos óleos. As propriedades óticas dos nanocompósitos indicaram que a presença dos óleos levou a filmes menos opacos, para ambos os tipos de processamentos usados. Com relação aos diferentes processamentos usados na preparação dos filmes baseados em BPEAD, óleos e nanocristais, o melhor conjunto de resultados, com destaque para aqueles obtidos no ensaio de tração, foram resultantes do processamento via extrusão/termoprensagem, indicando que este processamento deve favorecer a dispersão de NCCs na matriz de BPEAD. Os resultados desse trabalho apontaram para boas perspectivas para o uso de nanocristais de celulose em filmes baseados em BPEAD (ou PEAD), utilizando óleos vegetais como compatibilizantes e também mostraram que é possível obter melhorias nas propriedades dos nanocompósitos através de processos mais adequados para a escala industrial, como a extrusão. No presente estudo, contribuiu-se para com o desenvolvimento de materiais que, dentre outras propriedades, na sua produção, utilização e substituição, ocorra menor emissão de CO2 para a atmosfera, comparativamente a outros materiais. / The high-density polyethylene used in this work was obtained on an industrial scale by polymerization of ethylene derived from sugar cane ethanol. This polymer is also called biopolyethylene (HDBPE), as it is a material derived from a renewable resource. HDBPE was used as a polymer matrix in composites reinforced by curaua fibers containing 5, 10, 15 and 20 wt%, 1-cm long. Castor oil (CO), canola oil (CA), epoxidized linseed oil (ELO) and epoxidized soybean linseed oil (ESO) were used in the preparation of composites (5, 10, 15 e 20 wt%) aiming to act as a coupling agent, since CO, CA, ESO and ELO have hydrocarbon chains with affinity for polyethylene and hydroxyl groups that can interact with polar groups on the fibers. The composites were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetryc analysis (TG), dynamic mechanical analysis (DMA) and mechanical properties (flexural and impact strength). The results of impact, flexural strength and DMA presented by composites showed that the incorporation of oils in various compositions, particularly CO, in general has led to improved properties when compared to the composite HDBPE/Fiber, thus indicating a possible action of the oil as a compatibilizer in the fiber/matrix interface. The composite HDBPE/15%CO/15%Fiber had a higher impact strength (280 J m-1) compared to HDBPE (234 J m-1), indicating the compatibilizer effect of CO. The properties of composites (HDBPE/5%CO, CA, ESO or ELO/10%Fiber) reinforced with curaua (3mm) and prepared using an internal mixer (Haake) followed by thermopress molding were compared with those prepared by extrusion and was molded by injection. The properties of composites (HDBPE/5%CO, CA, ESO or ELO/10%Fiber) reinforced with curaua (3mm), prepared using an internal mixer (Haake) followed by thermopress molding were compared with those prepared by extrusion and molded by injection. The impact strength of composites processed via extrusion HDBPE/CO (287 J m-1), CA (240 J m-1) or OSE / fiber (222 J m-1) was higher when compared to composites processed via internal mixer HDBPE/CO (114 J m-1), CA (123 J m-1) or OSE/Fiber (110 J m-1). DMA analysis also showed that the composite HDBPE/5%CO/10%Fiber prepared by extrusion/injection showed higher storage modulus (E\') at 30°C of 1660 MPa, while the composite processed by internal mixer presented an E\' of 1219 MPa. Comparing the mechanical properties of the composites
7

Valorização de fibras de sisal: síntese de ésteres de celulose e preparação de materiais / Valorization of sisal fibers: synthesis of cellulose esters and preparation of materials

Rodrigues, Bruno Vinícius Manzolli 28 November 2014 (has links)
O presente trabalho visou à valorização da fibra lignocelulósica de sisal, focando principalmente em seu componente majoritário, a celulose, através da síntese de ésteres de celulose e também na preparação de diferentes materiais. A escolha dessa fonte lignocelulósica deveu-se a sua disponibilidade no país, sendo o Brasil o maior produtor e exportador mundial, e por se tratar de uma fonte de fibras com alto teor de celulose e de curto ciclo de crescimento. A síntese de ésteres de celulose com diferentes tamanhos de cadeia (acetatos, butanoatos e hexanoatos) e grau de substituição (GS) foi explorada, em meios homogêneo e heterogêneo, visando à identificação de condições que levassem aos melhores rendimentos. Em meio homogêneo, utilizando DMAc/LiCl como sistema de solvente e anidridos ácidos como agentes esterificantes, a síntese de ésteres de celulose com diferentes tamanhos de cadeia e GS (0,2-3,0) foi possível, apenas ajustando-se a razão MolAnidrido/MolCelulose. Em meio heterogêneo, diferentes rotas de síntese foram exploradas. Com o uso do sistema anidrido ácido/iodo metálico (catalisador), apenas ésteres de cadeia curta (acetatos) puderam ser obtidos com alta eficiência. Na busca de rotas alternativas para a obtenção de ésteres de cadeias mais longas, o uso de cloreto ácido e piridina (como meio reacional e como catalisador nucleofílico, respectivamente) levou à obtenção de butanoatos de celulose completamente substituídos, em apenas 30 minutos. Posteriormente, os ésteres de celulose, preparados em meio homogêneo, foram considerados como materiais de partida na preparação de filmes e biocompósitos [ésteres de celulose/celulose (0-20%)], também utilizando DMAc/LiCl como sistema de solvente. Os resultados de análise dinâmico- mecânica (DMA) e ensaios de tração revelaram que, de modo geral, a introdução de celulose levou a biocompósitos com propriedades superiores em relação aos filmes sem celulose. Resultados superiores de módulo de armazenamento e resistência à tração foram obtidos com a consequente geração de materiais que apresentaram valores superiores de Módulo de Tração e menor alongamento na ruptura. Por exemplo, biocompósitos a partir de butanoato de celulose (GS 1,8) com 20% de celulose mostraram valor de módulo de armazenamento (675 MPa) quase 4x maior que o mesmo filme sem reforço (195 MPa). Para os filmes a partir de hexanoatos de celulose (GS 1,8), a adição de celulose aumentou a resistência à tração em até 1 unidade (15% de celulose), em relação ao filme sem reforço. Por meio do uso de técnicas avançadas de caracterização de superfície (XPS e ToF-SIMS), pôde-se estudar a distribuição dos grupos ésteres nas superfícies dos filmes, assim como a influência da variação do tamanho da cadeia do éster, GS e da presença da celulose nesta distribuição. Em linhas gerais, quando a cadeia lateral manteve-se constante (butanoatos), os resultados de XPS revelaram um aumento na contribuição do carbono alifático com o aumento do GS. Em relação à cobertura superficial por cadeias alifáticas dos grupos ésteres, os resultados de XPS indicaram uma maior concentração de celulose na superfície da matriz do biocompósito preparado a partir de acetato de celulose. Por outro lado, para os ésteres de cadeias maiores (butanoatos e hexanoatos de celulose), os resultados de XPS apontaram que a celulose estaria majoritariamente presente nas camadas mais internas, gerando um maior recobrimento da superfície dos biocompósitos pelos grupos ésteres da matriz. De acordo com os dados de ToF-SIMS, os grupos ésteres se distribuíram de maneira uniforme ao longo das superfícies dos filmes e biocompósitos. Posteriormente, após uma exploração de diversas condições de pré-tratamento na massa celulósica, as quais visaram condições ótimas para a dissolução da celulose em sistema aquoso de NaOH/Uréia e posterior coagulação em meio ácido, microesferas de celulose de sisal foram preparadas com sucesso. Essas microesferas de celulose apresentam potencialidade de aplicação em diversas áreas, como na liberação controlada de fármacos e cromatografia. Na etapa final, a fibra lignocelulósica e a celulose de sisal foram consideradas como materiais de partida em um estudo envolvendo a técnica de eletrofiação a temperatura ambiente, utilizando ácido trifluoroacético (TFA) como solvente. A partir do uso dessa técnica, a dissolução da fibra lignocelulósica e sua posterior reconstrução levou a formação de fibras ultrafinas (120 a 510 nm). A eletrofiação da celulose de sisal levou a formação de fibras ultrafinas e nanofibras (<100 nm), em um amplo intervalo de diâmetros, apenas ajustando-se a vazão da solução. Os resultados obtidos neste trabalho abrem uma vasta gama de possíveis aplicações, nas quais as fibras ultrafinas e nanofibras, preparadas a partir da biomassa lignocelulósica, podem ser empregadas, tais como membranas, filmes em estruturas do tipo sanduíche ou mesmo como reforço em compósitos. Através do presente trabalho, diferentes tipos de materiais foram preparados, a partir da fibra lignocelulósica e da celulose de sisal, ampliando as possibilidades de aplicação destes materiais em diversas áreas. / The present investigation aimed at the valorization of the lignocellulosic sisal fiber, mainly focusing on its main component, i.e. cellulose, through the synthesis of cellulose esters and preparation of different materials. This lignocellulosic source was chosen due to its availability in the country since Brazil is the largest producer and exporter worldwide and also because this lignocellulosic source has a high cellulose content and a short life cycle. The synthesis of cellulose esters with varied chain lengths (acetates, butanoatos and hexanoates) and degree of substitution (DS) was explored in homogeneous and heterogeneous media in order to identify the conditions that led to better yields. In the homogeneous medium, by using DMAc/LiCl as the solvent system and acid anhydrides as the esterifying agents, the synthesis of cellulose esters with varied chain lengths and DS (0.2-3.0) was possible by only adjusting the MolAnhydride/MolCellulose ratio. In the heterogeneous medium, different synthesis routes were explored. By using acid anhydride/metallic iodine (catalyst) as the system, only short-chain cellulose esters (acetates) could be obtained with high efficiency. In the search for new routes to obtain cellulose esters with longer chains, completely substituted esters (GS 3.0) were obtained by using acid chloride and pyridine (as the reaction medium and nucleophilic catalyst) in just 30 minutes. Afterwards, by using the same solvent system (DMAc/LiCl), cellulose esters prepared in a homogeneous medium were used as starting materials in the preparation of films and biocomposites [cellulose ester/cellulose (0-20 wt%)]. The results of dynamic-mechanical analysis (DMA) and tensile tests revealed that, in general, the cellulose loading led to biocomposites with superior properties than the films without cellulose. Thus, higher values of storage modulus and tensile strength were obtained, which consequently led to materials with higher Young Modulus and lower elongation at break. For example, biocomposites from cellulose butanoate (GS 1.8) with 20 wt% of cellulose showed a storage module value (675 MPa) almost 4 times higher than the film without cellulose (195 MPa). For the cellulose biocomposites from cellulose hexanoate (GS 1.8), the cellulose loading increased the tensile strength up to 1 unit (15 wt% cellulose) comparatively to the film without cellulose. By means of advanced techniques of surface characterization (XPS and ToF-SIMS), the distribution of the cellulose ester groups along the films/biocomposites surfaces were studied as well as the influence of the different cellulose esters chain lengths, DS and presence of cellulose on that distribution. XPS results revealed an increase in the contribution of the aliphatic carbon as the DS increased when the side chain remained constant (butanoates). Regarding the surface coverage by aliphatic chains of the ester groups, XPS results indicated a higher concentration of cellulose on the surface of the biocomposite prepared from cellulose acetate as its matrix. Conversely, for the cellulose esters with longer chains (butanoates and hexanoates), XPS results pointed that the cellulose was mostly present in the inner layers, which generated a higher surface coverage of these biocomposites\' surfaces by the aliphatic chains of the ester groups. According to the ToF- SIMS results, the esters groups were evenly distributed on the surface of the films and biocomposites. Thereafter, beads from sisal cellulose were successfully prepared after an exploration of various pre-treatment conditions on the cellulosic mass, where optimal conditions were found to lead to complete cellulose dissolution in NaOH/Urea aqueous system followed by coagulation in acid medium. Cellulose beads present a high potential of application in several areas, for example in controlled drug delivery and chromatography. At the final stage of this work, the lignocellulosic sisal and sisal cellulose fibers were used as starting materials in a study involving the electrospinning technique at room temperature, by using trifluoroacetic acid (TFA) as solvent. Through this technique, the lignocellulosic fiber dissolution and later reconstruction led to ultrathin fibers (120 to 510 nm). The electrospinning of sisal cellulose led to ultrathin fibers and nanofibers (<100 nm) in a wide interval of diameters, by only varying the solution flow rate. The results obtained in this investigation open a wide range of possible applications, in which the ultrathin and nanofibers prepared from the lignocellulosic biomass can be used, such as membranes, sandwich-type structure of films or as reinforcement in composite materials. Through the present work, different materials were prepared from the lignocellulosic sisal and sisal cellulose fibers, which contributed to expand the possibilities of application of these materials in diverse areas.
8

Valorização de fibras de sisal: síntese de ésteres de celulose e preparação de materiais / Valorization of sisal fibers: synthesis of cellulose esters and preparation of materials

Bruno Vinícius Manzolli Rodrigues 28 November 2014 (has links)
O presente trabalho visou à valorização da fibra lignocelulósica de sisal, focando principalmente em seu componente majoritário, a celulose, através da síntese de ésteres de celulose e também na preparação de diferentes materiais. A escolha dessa fonte lignocelulósica deveu-se a sua disponibilidade no país, sendo o Brasil o maior produtor e exportador mundial, e por se tratar de uma fonte de fibras com alto teor de celulose e de curto ciclo de crescimento. A síntese de ésteres de celulose com diferentes tamanhos de cadeia (acetatos, butanoatos e hexanoatos) e grau de substituição (GS) foi explorada, em meios homogêneo e heterogêneo, visando à identificação de condições que levassem aos melhores rendimentos. Em meio homogêneo, utilizando DMAc/LiCl como sistema de solvente e anidridos ácidos como agentes esterificantes, a síntese de ésteres de celulose com diferentes tamanhos de cadeia e GS (0,2-3,0) foi possível, apenas ajustando-se a razão MolAnidrido/MolCelulose. Em meio heterogêneo, diferentes rotas de síntese foram exploradas. Com o uso do sistema anidrido ácido/iodo metálico (catalisador), apenas ésteres de cadeia curta (acetatos) puderam ser obtidos com alta eficiência. Na busca de rotas alternativas para a obtenção de ésteres de cadeias mais longas, o uso de cloreto ácido e piridina (como meio reacional e como catalisador nucleofílico, respectivamente) levou à obtenção de butanoatos de celulose completamente substituídos, em apenas 30 minutos. Posteriormente, os ésteres de celulose, preparados em meio homogêneo, foram considerados como materiais de partida na preparação de filmes e biocompósitos [ésteres de celulose/celulose (0-20%)], também utilizando DMAc/LiCl como sistema de solvente. Os resultados de análise dinâmico- mecânica (DMA) e ensaios de tração revelaram que, de modo geral, a introdução de celulose levou a biocompósitos com propriedades superiores em relação aos filmes sem celulose. Resultados superiores de módulo de armazenamento e resistência à tração foram obtidos com a consequente geração de materiais que apresentaram valores superiores de Módulo de Tração e menor alongamento na ruptura. Por exemplo, biocompósitos a partir de butanoato de celulose (GS 1,8) com 20% de celulose mostraram valor de módulo de armazenamento (675 MPa) quase 4x maior que o mesmo filme sem reforço (195 MPa). Para os filmes a partir de hexanoatos de celulose (GS 1,8), a adição de celulose aumentou a resistência à tração em até 1 unidade (15% de celulose), em relação ao filme sem reforço. Por meio do uso de técnicas avançadas de caracterização de superfície (XPS e ToF-SIMS), pôde-se estudar a distribuição dos grupos ésteres nas superfícies dos filmes, assim como a influência da variação do tamanho da cadeia do éster, GS e da presença da celulose nesta distribuição. Em linhas gerais, quando a cadeia lateral manteve-se constante (butanoatos), os resultados de XPS revelaram um aumento na contribuição do carbono alifático com o aumento do GS. Em relação à cobertura superficial por cadeias alifáticas dos grupos ésteres, os resultados de XPS indicaram uma maior concentração de celulose na superfície da matriz do biocompósito preparado a partir de acetato de celulose. Por outro lado, para os ésteres de cadeias maiores (butanoatos e hexanoatos de celulose), os resultados de XPS apontaram que a celulose estaria majoritariamente presente nas camadas mais internas, gerando um maior recobrimento da superfície dos biocompósitos pelos grupos ésteres da matriz. De acordo com os dados de ToF-SIMS, os grupos ésteres se distribuíram de maneira uniforme ao longo das superfícies dos filmes e biocompósitos. Posteriormente, após uma exploração de diversas condições de pré-tratamento na massa celulósica, as quais visaram condições ótimas para a dissolução da celulose em sistema aquoso de NaOH/Uréia e posterior coagulação em meio ácido, microesferas de celulose de sisal foram preparadas com sucesso. Essas microesferas de celulose apresentam potencialidade de aplicação em diversas áreas, como na liberação controlada de fármacos e cromatografia. Na etapa final, a fibra lignocelulósica e a celulose de sisal foram consideradas como materiais de partida em um estudo envolvendo a técnica de eletrofiação a temperatura ambiente, utilizando ácido trifluoroacético (TFA) como solvente. A partir do uso dessa técnica, a dissolução da fibra lignocelulósica e sua posterior reconstrução levou a formação de fibras ultrafinas (120 a 510 nm). A eletrofiação da celulose de sisal levou a formação de fibras ultrafinas e nanofibras (<100 nm), em um amplo intervalo de diâmetros, apenas ajustando-se a vazão da solução. Os resultados obtidos neste trabalho abrem uma vasta gama de possíveis aplicações, nas quais as fibras ultrafinas e nanofibras, preparadas a partir da biomassa lignocelulósica, podem ser empregadas, tais como membranas, filmes em estruturas do tipo sanduíche ou mesmo como reforço em compósitos. Através do presente trabalho, diferentes tipos de materiais foram preparados, a partir da fibra lignocelulósica e da celulose de sisal, ampliando as possibilidades de aplicação destes materiais em diversas áreas. / The present investigation aimed at the valorization of the lignocellulosic sisal fiber, mainly focusing on its main component, i.e. cellulose, through the synthesis of cellulose esters and preparation of different materials. This lignocellulosic source was chosen due to its availability in the country since Brazil is the largest producer and exporter worldwide and also because this lignocellulosic source has a high cellulose content and a short life cycle. The synthesis of cellulose esters with varied chain lengths (acetates, butanoatos and hexanoates) and degree of substitution (DS) was explored in homogeneous and heterogeneous media in order to identify the conditions that led to better yields. In the homogeneous medium, by using DMAc/LiCl as the solvent system and acid anhydrides as the esterifying agents, the synthesis of cellulose esters with varied chain lengths and DS (0.2-3.0) was possible by only adjusting the MolAnhydride/MolCellulose ratio. In the heterogeneous medium, different synthesis routes were explored. By using acid anhydride/metallic iodine (catalyst) as the system, only short-chain cellulose esters (acetates) could be obtained with high efficiency. In the search for new routes to obtain cellulose esters with longer chains, completely substituted esters (GS 3.0) were obtained by using acid chloride and pyridine (as the reaction medium and nucleophilic catalyst) in just 30 minutes. Afterwards, by using the same solvent system (DMAc/LiCl), cellulose esters prepared in a homogeneous medium were used as starting materials in the preparation of films and biocomposites [cellulose ester/cellulose (0-20 wt%)]. The results of dynamic-mechanical analysis (DMA) and tensile tests revealed that, in general, the cellulose loading led to biocomposites with superior properties than the films without cellulose. Thus, higher values of storage modulus and tensile strength were obtained, which consequently led to materials with higher Young Modulus and lower elongation at break. For example, biocomposites from cellulose butanoate (GS 1.8) with 20 wt% of cellulose showed a storage module value (675 MPa) almost 4 times higher than the film without cellulose (195 MPa). For the cellulose biocomposites from cellulose hexanoate (GS 1.8), the cellulose loading increased the tensile strength up to 1 unit (15 wt% cellulose) comparatively to the film without cellulose. By means of advanced techniques of surface characterization (XPS and ToF-SIMS), the distribution of the cellulose ester groups along the films/biocomposites surfaces were studied as well as the influence of the different cellulose esters chain lengths, DS and presence of cellulose on that distribution. XPS results revealed an increase in the contribution of the aliphatic carbon as the DS increased when the side chain remained constant (butanoates). Regarding the surface coverage by aliphatic chains of the ester groups, XPS results indicated a higher concentration of cellulose on the surface of the biocomposite prepared from cellulose acetate as its matrix. Conversely, for the cellulose esters with longer chains (butanoates and hexanoates), XPS results pointed that the cellulose was mostly present in the inner layers, which generated a higher surface coverage of these biocomposites\' surfaces by the aliphatic chains of the ester groups. According to the ToF- SIMS results, the esters groups were evenly distributed on the surface of the films and biocomposites. Thereafter, beads from sisal cellulose were successfully prepared after an exploration of various pre-treatment conditions on the cellulosic mass, where optimal conditions were found to lead to complete cellulose dissolution in NaOH/Urea aqueous system followed by coagulation in acid medium. Cellulose beads present a high potential of application in several areas, for example in controlled drug delivery and chromatography. At the final stage of this work, the lignocellulosic sisal and sisal cellulose fibers were used as starting materials in a study involving the electrospinning technique at room temperature, by using trifluoroacetic acid (TFA) as solvent. Through this technique, the lignocellulosic fiber dissolution and later reconstruction led to ultrathin fibers (120 to 510 nm). The electrospinning of sisal cellulose led to ultrathin fibers and nanofibers (<100 nm) in a wide interval of diameters, by only varying the solution flow rate. The results obtained in this investigation open a wide range of possible applications, in which the ultrathin and nanofibers prepared from the lignocellulosic biomass can be used, such as membranes, sandwich-type structure of films or as reinforcement in composite materials. Through the present work, different materials were prepared from the lignocellulosic sisal and sisal cellulose fibers, which contributed to expand the possibilities of application of these materials in diverse areas.
9

Fosfatação e ligação cruzada de amido de trigo e suas aplicações em filmes compósitos usando poli(óxido de etileno) / Phosphated and cross-linked wheat starches and their application in biocomposites films using polyethylene oxide

Bruni, Graziella Pinheiro 24 November 2016 (has links)
Submitted by Gabriela Lopes (gmachadolopesufpel@gmail.com) on 2017-03-14T15:42:14Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação Graziella Pinheiro Bruni.pdf: 2435737 bytes, checksum: dd5dfba33efd7d9048f7888720783b4a (MD5) / Approved for entry into archive by Aline Batista (alinehb.ufpel@gmail.com) on 2017-03-17T21:44:15Z (GMT) No. of bitstreams: 2 Dissertação Graziella Pinheiro Bruni.pdf: 2435737 bytes, checksum: dd5dfba33efd7d9048f7888720783b4a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-17T21:44:15Z (GMT). No. of bitstreams: 2 Dissertação Graziella Pinheiro Bruni.pdf: 2435737 bytes, checksum: dd5dfba33efd7d9048f7888720783b4a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-11-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / A associação entre polímeros naturais e sintéticos para formação de biocompósitos tem sido estudada. A mistura do amido com o poli (óxido de etileno) (PEO) para a formação de biocompósitos é interessante, pois o PEO é biodegradável, apresenta alta viscosidade e biocompatibilidade com matrizes orgânicas. Além disso, o PEO apresenta uma estrutura semicristalina que pode influenciar nas propriedades dos biocompositos. A interação do amido com PEO pode ser influenciada pela estrutura molecular do amido. Com isso, objetivou-se com o presente trabalho desenvolver filmes biocompósitos à base de amidos de trigo nativo, fosfatado ou intercruzado com a adição do PEO. O amido de trigo foi modificado por fosfatação e por ligação cruzada. Os amidos foram avaliados quanto ao teor de fósforo, teor de amilose, poder de intumescimento, solubilidade em água, propriedades térmicas, propriedades de pasta, cristalinidade e morfologia. Os filmes foram elaborados com amido nativo, fosfatado ou de ligação cruzada, e com adição de PEO. Os filmes foram avaliados quanto à morfologia, solubilidade em água, permeabilidade ao vapor de água (PVA), propriedades mecânicas, parâmetros de cor (luminosidade e opacidade), cristalinidade, rugosidade e higroscopicidade. O amido fosfatado, em relação aos demais amidos, apresentou maior teor de fósforo, teor de amilose e maior poder de intumescimento e solubilidade em água. Os filmes, independentemente do tipo de amido, com a adição de PEO quando comparados aos filmes de amidos sem PEO, apresentaram morfologia descontínua, foram mais cristalinos e rugosos e menos hidrofílicos. Os filmes biocompósitos apresentaram características adequadas para aplicação em embalagens flexíveis. / The association between natural and synthetic polymers for the formation of biocomposites has been studied. The mixture of starch with poly (ethylene oxide) (PEO) for the formation of biocomposites is interesting, since the PEO is biodegradable, has high viscosity and biocompatibility with organic matrices. In addition, PEO has a semicrystalline structure that may influence the properties of the biocomposites. The interaction of the starch with PEO can be influenced by the molecular structure of the starch. The aim of this work was to develop biocomposite films based on native wheat starches, phosphated or crosslinked with the addition of PEO. The wheat starch was modified by phosphating and crosslinking. Starches were evaluated for phosphorus content, amylose content, swelling power, water solubility, thermal properties, past properties, crystallinity and morphology. The films were prepared with native, phosphate or crosslinked starch, and with addition of PEO. The films were evaluated for morphology, water solubility, water vapor permeability (WVP), mechanical properties, color parameters (luminosity and opacity), crystallinity, roughness and hygroscopicity. The phosphate starch, in relation to the other starches, presented higher phosphorus content, amylose content, swelling power and water solubility. The films, regardless of the type of starch, with the addition of PEO when compared to the starch films without PEO presented discontinuous morphology, were more crystalline and rough and less hydrophilic. The biocomposite films presented characteristics for possible use in flexible packages.
10

Electrospun biocomposites and 3D microfabrication for bone tissue enginneering / Biocomposites électrofilés et microfabrication 3D pour l’ingénierie des tissus osseux

Faria Bellani, Caroline 10 September 2018 (has links)
Des membranes biodégradables en polycaprolactone pour la régénération osseuse guidée, obtenues par electrospinning, incorporés avec différents rapports de nanocomposites de nanocristaux de cellulose et du Biosilicate®, ont été fabriquées, avec propriétés mécaniques et ostéogéniques améliorés. En tant que stratégie de vascularisation rapide, un greffon biomimétique suturable obtenue par fusion de membranes électrofilées a été fabriqué, avec des motifs poreux obtenus par micro- usinage au laser pour permettre la migration des cellules endothéliales vers le greffon osseux. Les motifs poreux créés sur les greffes suturables ont permis aux cellules endothéliales migrer vers la culture 3D des ostéoblastes dans des hydrogels en gélatine méthacryloyl (GelMA), et des structures 3D ont été observées. Par conséquent, cette stratégie peut être utilisée pour améliorer la taille et la survie des implants osseux biofabriqués, en accélérant la traduction clinique de l'ingénierie du tissu osseux. / Biodegradable membranes for guided bone regeneration, made of polycaprolactone, obtained by electrospinning, incorporated with different nanocomposite ratios of cellulose nanocrystals and Biosilicate®, have been manufactured, with improved mechanical and osteogenic properties. As fast vascularization strategy, a suturable biomimetic graft obtained by fusion of electrospun membranes was fabricated, with porous patterns obtained by laser micromachining to allow migration of endothelial cells to the bone graft. The porous patterns created on the suturable grafts allowed the endothelial cells to migrate to the 3D culture of the osteoblasts in gelatin methacryloyl (GelMA), and 3D structures were observed. Therefore, this strategy can be used to improve the size and survival of biofabricated bone implants, accelerating the clinical translation of bone tissue engineering.

Page generated in 0.074 seconds