• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'un procédé de production d'hydrogène photofermentaire à partir de lactosérum / Conception production and application of a photosynthetic process for the hydrogen production from whey.

Castillo Moreno, Patricia 17 May 2018 (has links)
L'hydrogène est une source d'énergie précieuse en tant que source d'énergie propre et que matière première pour des innombrables industries.Les procédés biologiques de production d'hydrogène gagnent en importance en raison de leurs avantages opérationnelles et de leur polyvalence dans les substrats utilisés (y compris les eaux usées).Dans cette thèse doctoral, on a développé une méthodologie photo-fermentative de production d'hydrogène en utilisant du lactosérum en tant que substrat pour la bactérie Rhodobacter capsulatus IR3::LacZ et B10::LacZ.Ce projet a été réalisé en trois étapes, exposées dans les différents chapitres.Dans la première étape on a identifié les facteurs pertinents pour la production de l'hydrogène avec du sérum synthétique en utilisant la méthodologie de plan d'expériences.Les résultats de cet étape on a obtenu quatre modèles statistiques et on a choisi la souche IR3::LacZ pour les expériences avec du lactosérum industriel.Le rendement volumétrique maximal et le rendement produit / substrat Y P/S obtenus pour la première étape ont été de 64 ml h-1L-1 et 2,08 mol H2 mol-1 C (“C” représente la source de carbone dans ce cas lactose et lactate) pour la solution amortissant le phosphate et 43.01 ml h-1L-1 y 2.52 mol H2 mol-1 C pour la solution Kolthoff.Dans la deuxième étape, on a évalué la production d'hydrogène avec du lactosérum industriel. On a appliqué un pré-traitement de trois étapes avant d'utiliser le lactosérum comme substrat : réduction du contenu gras, déprotéinisation et stérilisation. On a obtenu un modèle validé qui décrit la production d'hydrogène seulement pour la solution amortissant de phosphate. Le rendement volumétrique maximal et le YP/S ont été de 45.93 ml h-1L-1 et de 2.29 mol H2 mol-1 C respectivement. On a déterminé que l'addition d'une étape d’homo-fermentation au processus de prétraitement es avantageuse au rendement du processus. On a obtenu une productivité volumétrique de 69.71 ml h-1L-1 et de YP/S de 2.96 mol H2 mol-1 CLa troisième étape a été la mise à l'échelle des expériences à réacteurs de 1,5 L pour sérum synthétique et de 1L pour serum industriel. On a décelé de la contamination dû à la présence d'un processus de fermentation, lequel a généré une haute production de biogas composé exclusivement par H2 y CO2 ce dernier dans une concentration non superieur à 30% (v/v).Pour ces raisons, on a conclu que conclu que le processus de production intégré, en couplant la fermentation obscure et la photo-fermentation est une option avec un énorme potentiel pour l'utilisation de lactosérum comme substrat dans la production d'hydrogène. / Hydrogen is a valuable gas use as a clean energy source and feedstock for some industries. Biological hydrogen production processes are gaining importance due to their operational conditions and versatility in the substrates (including wastewater). A hydrogen production photo fermentative methodology was developed using cheese whey as a substrate for the bacteria Rhodobacter capsulatus strain IR3::LacZ and B10::LacZ . The project was carried out in three stages.The purpose of the first stage is to identify the relevant factors to produce hydrogen for a synthetic whey medium in a photofermentation process, using the Design of Experiments methodology. The products of this stage are four statistical models, obtained for each strain and buffer solution studied. The strain IR3::LacZ was selected for the experiments with industrial whey as substrate. The maximum volumetric yield and the product/substrate yield YP/S were 64 ml h-1L-1 and 2.08 mol H2 mol-1 C (C is the carbon source in this case lactose and lactate) and 43.01 ml h-1L-1 and 2.52 mol H2 mol-1 C for phosphate buffer and Kolthoff buffer, respectively.In the second stage the production of hydrogen with industrial whey was evaluated. A three-step pre-treatment was applied before using industrial cheese whey as substrate: fat reduction, deproteinization and sterilization. A validate statistical model describing hydrogen production was only obtained for phosphate buffer. The maximum volumetric yield and the product/substrate yield YP/S were 45.93 ml h-1L-1 and 2.29 mol H2 mol-1 C respectively. The addition of an homofermentation to the pretreatment improved the production yield, in this case a volumetric productivity of 69.71 ml h-1L-1 and a YP/S of 2.96 mol H2 mol-1 C were obtained.The third stage was the scale-up to 1.5 and 1 reactor L for synthetic whey and 1L for synthetic and industrial whey respectively. A fermentative process appeared due to a bacterial contamination, leading to a high biogas production. Biogas was exclusively composed of H2 and CO2 the last in a concentration not exceeding 30% (v/v). For this reason, it was concluded that the integrated production process coupling dark and photo fermentations) is an option with great potential for the use of whey as substrate in the production of hydrogen.
2

Décoloration d’effluents de distillerie par un consortium microbien / Decolorization of molasses wastewater from distilleries using bacterial consortium

Jiranuntipon, Suhuttaya 06 March 2009 (has links)
Les effluents de distillerie de mélasse de canne à sucre génèrent une pollution environnementale due à, d’une part de grands volumes et d’autres part à la présence de composés de couleur brune foncée, connus sous le nom de mélanoïdines. Dans cette étude, un consortium bactérien CONS8 isolé dans des sédiments de chute d'eau a été choisi comme consortium apte à la décoloration de la mélasse. On a montré que le consortium CONS8 pouvait décolorer, trois eaux usées synthétiques différentes, élaborées respectivement à base de Viandox (13,48% v/v), d’eau usée de mélasse de betterave (41,5% v/v) ou d’eau usée de mélasse de canne à sucre (20% v/v). Les décolorations obtenues en 2 jours seulement, en fioles d’Erlenmeyer sont respectivement de 9,5, à 8,02 et à 17,5%. Quatre bactéries prédominantes ont été identifiées dans le consortium CONS8 par l'analyse de l'rADN 16S. Sur la base de cette identification, et afin de réaliser la décoloration la plus élevée, un consortium bactérien artificiel MMP1 a été reconstruit avec Klebsiella oxytoca, Serratia mercescens (T2) et la bactérie inconnue DQ817737 (T4). Dans des conditions optimisées (aération, pH) le consortium bactérien MMP1 a permis de décolorer l'eau usée synthétique contenant de la mélanoidine à 18,3% en 2 jours. La comparaison de la décoloration par le consortium MMP1 avec un milieu abiotique a démontré que la décoloration était principalement due à l'activité biotique des cellules bactériennes, sans aucun phénomène d'adsorption. Un complément en minéraux et vitamines B n'a pas amélioré la décoloration de mélanoïdines avec le consortium bactérien MMP1. Enfin, les performances d'un bioréacteur à membrane pour traiter les eaux résiduaires synthétiques contenant de la mélanoïdine ont été évaluées à l’échelle du laboratoire. L'ensemencement du réacteur a été réalisé avec un inoculum sur la base du consortium MMP1. Le réacteur a fonctionné sous plusieurs conditions de temps de séjour hydrauliques (HRT) de 15, 20, et 40 heures. Les performances ont été analysées en termes de DCO (demande chimique en oxygène), décoloration et croissance de biomasse. Les résultats ont indiqué qu’une efficacité accrue d’élimination de la DCO et de la couleur ont été obtenues avec le HRT le plus long. / Distillery effluent from sugarcane molasses leads to an environmental pollution due to its large volume and the presence of dark brown colored compounds, known as melanoidins. In this study, a bacterial consortium CONS8 isolated from waterfall sediments in Maehongsorn province was selected as a molasses-decolorizing consortium. Consortium CONS8 was able to decolorize, only within 2 days, in Erlenmeyer flasks, three different synthetic wastewaters containing either Viandox sauce (13.5% v/v), beet molasses wastewater (41.5% v/v) or sugarcane molasses wastewater (20% v/v) at 9.5, 8.0 and 17.5%, respectively. Four predominant bacteria present in the consortium CONS8 were identified by the 16S rDNA analysis. To achieve the highest decolorization, the artificial bacterial consortium MMP1 comprising Klebsiella oxytoca, Serratia mercescens (T2) and unknown bacterium DQ817737 (T4), was constructed. Under optimized conditions (aeration, pH), the bacterial consortium MMP1 was able to decolorize the synthetic melanoidins-containing wastewater at 18.3% within 2 days. The comparison of decolorization by the consortium MMP1 with abiotic control proved that the color removal for synthetic melanoidins-containing wastewater medium was mainly due to biotic activity of bacterial cells, without any adsorption phenomena. Supplement of nutrients and vitamin B did not promote melanoidins decolorization by bacterial consortium MMP1. Finally, the performance of a membrane bioreactor (MBR) for synthetic melanoidins-containing wastewater treatment was investigated at laboratory scale, with a mineral membrane. The reactor seeding was made with the MMP1 bacterial consortium inoculum. The reactor was performed with several hydraulic retention times (HRT) of 15, 20, and 40 hours. The performances were analyzed in terms of COD, color removal and biomass in the reactor. The results indicated that the higher COD and color removal efficiency were achieved with the longer HRT.
3

Étude de la Nitrification partielle d'eaux ammoniacales dans un bioréacteur membranaire/Partial nitrification study on ammonia solutions using a Membrane Bioreactor

Kouakou, N'Guessan Edouard 16 February 2007 (has links)
Nitrogen is the major component of biosphere. Paradoxically, nitrogen pollution is the concern globally. Ammonia pollution is due to its unceasing rejection into nature such as groundwater, current water and the atmosphere. This phenomenon constitutes a threat for the humanity, land and aquatic flora, and consequently disturbs the balance of natural ecosystem. Recently, that situation has lead to develop various techniques and/or technologies for ammonia removal from municipal and industrial wastewaters. Particularly in the environmental biotechnology area, two main objectives were recently aimed in many research activities: the development of new configurations of competitive bioreactors and the monitoring of partial nitrification process, which are the fundamental basis of this thesis project. In this study, the partial ammonium oxidation process, also called nitrite route, was studied in a 60 litre jet-loop submerged membrane bioreactor pilot plant. The research was organized around six chapters. An exhaustive literature review of the state-of- art of the biological nitrification process and the membrane technologies was performed. The materials and measurement methods were presented. The colorimetric method, the chromatography analysis, the biomass estimation by the suspended solids (SS), the aggregates size measurement, the gas holdup, the gas-liquid mass transfer, the bubbles gas diameter determination, the medium rheology aspects, etc., and the complete equipment of the bioreactor were studied in detail. The plant automation functioning was also studied. Membrane module (Mitsubishi Sterapore-L) characterization was carried out and three characteristic parameters were estimated: the membrane intrinsic resistance Rm, the membrane permeability Lp and the membrane porosity εm. Estimations revealed good agreement between experimental results and theoretical methods based on the Darcys law and the Carman-Kozeny law applicable in microfiltration system. Hydrodynamics and aeration aspects were studied. The mixing in the jet-loop system was characterized by the mixing time (tmix) and the circulation time (tc), respectively. The results showed that the characteristic times (tmix and tc) decrease with an increase in input gas flowrate and the circulated liquid flowrate. A model correlation involving the air and the combined liquid effects was proposed to describe the circulation time evolution. The classical non-steady state clean water test was used to determine the gas-liquid mass transfer coefficient (kLa). It was found to be influenced by the combined action of air and recirculated-liquid flowrates and a correlation has been proposed to describe their influence. The interpretation of kLa results and the system mixing data showed that the developed reactor corresponds to a near perfect mixing tank. This criterion was satisfactorily verified by literature data. The gas holdup (εg) was directly measured by the volume expansion method. In the absence of liquid circulation, εg ranged between 1 and 4% for the investigated range of gas liquid superficial velocities. It was found to increase linearly with the air superficial velocity, which corresponds to the bubbly flow regime. However, in the presence of liquid flowrate, εg slightly increased (from 1 to 6%) with increase in the superficial liquid velocity. A model has been proposed to correlate εg and the air and the recirculated-liquid velocities. The average diameter of the bubbles gas (dB) in the system was also estimated by the Leibson theoretical model based on the Reynolds number at the orifice of the gas distributor. Finally, biological aspects were studied. Respirometry measurements were conducted to characterize the process medium. The mass transfer, the gas holdup and the medium viscosity were determined. The obtained data allowed estimating the α factor and the β factor, respectively. The interaction of the growth of microorganisms into the process and the membrane performance was also investigated and a correlation model was proposed to describe membrane fouling with time. The optimal conditions for ammonium partial oxidation were determined using process monitoring and simulation. Dissolved oxygen (DO), temperature (T) and hydraulic retention time (HRT) were selected to achieve a high nitrite accumulation in the system. The results obtained showed that the selected parameters should be fixed at DO ≈ 2 mgO2.l-1, HRT ≈ 6 7 h and T = 30°C, respectively. The partial nitrification was simulated by the use of the TwoPopNitrification model included into the BioWin 2.2 software. For these simulations, a sequencing ammonia oxidation assumption was adopted: the nitrozation followed by the nitration step, respectively. The corresponding kinetics and stoichiometric constants were estimated by combining literature data and experimental nitrification results. For these estimates, the ammonium oxidation was monitored on several process samples taken at different times. The estimates were also delivered by monitoring the ammonium oxidation on the process operated in the batch mode. The plotting of simulations and experimental results revealed good agreement. In order to investigate the process performance in terms of biological stability, a long time period (≈ 600 days) was simulated. The results showed that a high stable nitrite accumulation (> 95%) could be achieved when the above optimal conditions are imposed to the system. However, after a long time, the accumulated nitrite is converted into nitrate and then the system is disrupted. For the simulated experimental conditions, the process disruption period was located between 180 and 350 days. At this period, a corresponding theoretical purge flowrate was found to range between 0.15 10-3 m3.d-1 and 3.0 10-3 m3.d-1. Simulations also showed that increasing the purge flowrate decreases the sludge retention time and then favours nitrite accumulation into the process. That is an interesting strategy to increase the performance of the biological partial nitrification process.

Page generated in 0.0461 seconds