• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Solid Waste Degradation, Compaction and Water Holding Capacity

Vaidya, Rajendra D. 14 November 2002 (has links)
Bioreactor landfills offer a sustainable way to achieve increased waste degradation along with benefits such as enhanced landfill gas (LFG) recovery, reduction in leachate pollution potential and rapid increase in landfill volumetric capacity. It also offers significant reduction in post closure management activities as leachate treatment, LFG impact on the environment and improves the potential for land reuse. The regulatory 30 year post-closure period is believed to account for attenuation of organics, metals and trace pollutants of adverse environmental consequences. Methodologies to improve the degradation rate and process are refuse shredding, nutrient addition, pH buffering, and temperature control along with moisture enhancement. Municipal Solid Waste (MSW) settlement and field capacity are of significant beneficial interest to achieve maximum utility of landfill volume and compute water requirements for rapid degradation using bioreactor concepts. Physical and biochemical Municipal Solid Waste (MSW) characteristics were investigated with specific emphasis on the Bio-Chemical methane potential (BMP) test. The impact of waste characteristics on its compressibility and moisture retention capacity was evaluated on a laboratory scale. Traditional in-situ waste compression models from literature were used to compare with the obtained laboratory data. / Master of Science
12

Biochemical Lignin Related Processes in Landfills

Irani, Ayesha 23 January 2006 (has links)
The objective of this study was to determine how the key features of bioreactor landfills; increased temperature, moisture and microbial activity, affect the biological stability of the landfill material. In the first part of the study the solubilization and degradation of lignin in paper exposed to these bioreactor landfill conditions are explored. The solubility of the lignin in paper was observed at different temperatures and over 27 weeks at 55°C and the anaerobic bioconversion of office paper, cardboard and Kraft lignin was observed in bench-scale reactors over 8 weeks. As the temperature rose, lignin solubility increased exponentially. With extended thermal treatment, the dissolution of lignin continues at a constant rate. This rate increases 15 times for paper and 1.5 times for cardboard in the presence of rumen inoculum compared to un-inoculated systems. At around 6 weeks the inter-monomeric linkages between the solubilized lignin molecules began breaking down, releasing monomers. In cardboard and Kraft lignin, a significant amount of the monomers mineralize to CO₂ and CH₄ during this time period. The results indicate that small, but significant rates of lignin solubilization and anaerobic lignin degradation are likely to occur in bioreactor landfills due to both higher temperature and microbial activity. In the second part of the study, field data from the Outer Loop Recycling and Disposal Facility in Louisville, Kentucky was evaluated to determine the effectiveness of an anaerobic-aerobic landfill bioreactor (AALB) vs. the control landfill that is managed as a traditional landfill. Moisture, temperature, elevation and the amount of time the MSW has spent in the landfills (age) were measured and compared to determine the factors that affect the biological stability of the landfill. The results showed that the MSW in the AALB is more biologically stable than the MSW in the control landfill, indicating that they are more degraded. Additionally, elevation or location of the MSW was the key factor in determining the extent of MSW stability within the AALB and temperature is the key factor in determining the biological stability of the MSW in the control landfill. Higher temperatures correlated with a more biologically stable waste. The cellulose to lignin ratio (C/L ratio) and biochemical methane potential (BMP) were the main biological stability parameters used. / Master of Science
13

Effect of salinity on biodegradation of MSW in bioreactor landfills /

Al-Kaabi, Salem. January 1900 (has links)
Thesis (Ph.D.) - Carleton University, 2007. / Includes bibliographical references (p. 248-258). Also available in electronic format on the Internet.
14

Design, optimisation and costing of a novel forced-upflow bioreactor for bioremediation of leachates from selected landfill sites in KwaZulu-Natal.

Vaughan, Halina. January 2011 (has links)
Most waste generated in South Africa is sent to landfills for disposal, and although it is confined in specific areas, it can potentially affect both above and below ground water resources, impacting environmental and public health. This is particularly relevant in a country where water supplies are limited and groundwater resources are prone to pollution. The primary objective of this study was to assess the performance of an upflow packed-bed bioreactor purposedesigned for the treatment of leachates produced by landfills in the Durban Metropolitan Area (DMA). The effect of parameters such as the nature of the biofilm support matrix, aeration rate and recycle rate on the efficacy of the system were investigated. Another major aim of the project was to develop a low maintenance technology that could, nonetheless, bioremediate leachate effectively at minimum cost. This aspect of process design is a crucial factor in areas where there is a shortage of both funds and skilled labour. The glass 132 l packed-bed upflow bioreactor was evaluated by measuring its efficiency in terms of chemical oxygen demand (COD) and biological oxygen demand (BOD) reduction and ammonia removal. The bioreactor could be configured as a batch-type system, which was useful for comparing operating conditions; or as a continuous cascade system, which was used to assess its overall performance. Different biofilm support matrices viz. various grades of pine bark, plastic bioballs and ceramic noodles were evaluated in 22 l batch-type reactors. Leachates from five landfill sites were remediated during the course of the study, and only the leachate from Shongweni landfill, which had a remarkably low BOD:COD ratio (0.05), was intractable and could not be successfully treated; even in flask trials designed to test strategies such as augmentation of microflora and biostimulation. The other leachates investigated were from the Umlazi, Marianhill, Bisarsar Road (all general sites) and Bul-Bul Drive (a semi-hazardous site) landfills, all of which were remediated to some degree. Originally, leachate from the Umlazi landfill site was used, but it became unavailable when the site closed enforcing the use of other leachates for the remainder of the investigation. Leachates from Marianhill, Bisarsar Road and Bul-Bul Drive were treated simultaneously in duplicate operating the six-chambered bioreactor in the batchtype configuration. The highest COD removal efficiency (49 %) was obtained in the chambers treating the Bul-Bul Drive leachate, which was therefore used for further investigations. This leachate had the highest BOD:COD ratio and was therefore expected to be the most suited to biological remediation. The bioreactor performed best when plastic bioballs were used as biofilm support matrix with a relatively low level of aeration, although the uncomposted form of pine bark was used initially as the support matrix because it is inexpensive and readily available in South Africa. However, although satisfactory COD reduction (30 – 61 %) and ammonia removal (87 – 98 %) was achieved when the Umlazi leachate was treated, the possibility of compounds leaching out of the bark and affecting the quality of the treated leachate was a concern. Also, pine bark would be prone to mechanical degradation in a full scale operation. Of the other solid support matrices tested using the Bul-Bul leachate, COD removal efficiencies were superior with plastic bioballs (60 %) than with pine bark chips (29 %). The former therefore became the preferred biofilm support matrix. Aeration level did influence bioremediation of the Umlazi landfill leachate since those chambers aerated with an aquarium pump (0.05 – 0.1 litres air/litre leachate/min; 60 % COD removal) performed better than those aerated with a blower (0.6 -0.7 litres air/litre leachate/min; 42 % COD removal) and those that remained unaerated (44 % COD removal). Recycle rate did not significantly affect bioremediation, but the performance of the system was higher when operated in batch mode (up to 60 % influent COD removal), rather than in continuous flow-through (cascade) mode when only 37 % of the influent COD in the Bul-Bul leachate was removed. Under the latter conditions, most of the reduction occurred in the first four chambers and very little biodegradation occurred in the final two chambers. The cascade-mode will require some refinement to enhance the COD removal efficiencies achieved. However, it did eliminate 89 % of the BOD present in the raw leachate, producing a treated effluent with a consistent BOD:COD ratio of 0.05. The COD removal efficiencies achieved covered a wide range from a minimum of 23 % with Marianhill leachate to a maximum of 63 % with leachate from Bul-Bul Drive. These results are comparable with many of those reported by other authors treating landfill leachate. Up to 98 % of the ammonia was removed when the Umlazi leachate was treated. However, ammonia removal from the other leachates tested was erratic. Although the treated leachate from this system could not be released into the environment without further remediation, the reduction in concentration of pollutants would allow its return to the local water supply via a wastewater treatment plant. This was achieved without temperature and pH regulation or addition of extraneous nutrient sources. A cost-effective, low maintenance technology such as this one would be a useful tool for the treatment of effluents such as landfill leachate in countries like South Africa where although water conservation is urgently required, resources for highly sophisticated effluent remediation are often not readily available. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
15

Evaluation of the Engineering Properties of Municipal Solid Waste for Landfill Design

Lakshmikanthan, P January 2015 (has links) (PDF)
The objective of this thesis is to evaluate the engineering properties of Municipal Solid Waste (MSW) that are necessary in the design of landfills. The engineering properties of MSW such as compressibility, shear strength, stiffness and hydraulic conductivity are crucial in design and construction of landfills. The variation of the engineering properties with time, age and degradation are of paramount importance in the field of landfill engineering. There is a need to address the role of the engineering properties in landfill engineering as it is not apparent how the engineering characteristics vary with time. The thesis presents the results of study of the engineering properties of MSW comprehensively and develops experimental data for design of MSW landfills. The work includes the study of the index properties and the engineering properties of MSW such as compressibility, shear strength, shear modulus and damping ratio and a detailed experimental study of the bioreactor landfill. The components of settlements, variation of shear strength with respect to unit weight and particle size are determined experimentally and analyzed. The dynamic properties such as shear modulus and material damping ratio and its variation with parameters such as unit weight, load, amplitude, degradation and moisture content are studied and analyzed. The normalized shear modulus reduction curve which is used in the seismic analysis of the landfills is developed for MSW based on the experimental results and previous studies. A pilot-scale bioreactor was setup in the laboratory for long term monitoring of the settlement, temperature variation and gas production simultaneously. The parameters of interest viz, pH, BOD, COD, conductivity, alkalinity, methane and carbon-di-oxide were determined. The generated data can be effectively used in the engineered design of landfills. For a better understanding, the present thesis is divided into the following eight chapter Chapter 1 provides a general introduction to the thesis with respect to the importance of engineering properties of MSW and presents the organization of the thesis. Chapter 2 presents a detailed review of literature pertaining to the basic, index and the engineering properties of MSW namely compressibility, shear strength, shear modulus and damping ratio, bioreactor landfill and also the scope of the study. Chapter 3 includes the materials and methods followed in the thesis. Chapter 4 presents the evaluation of compressibility characteristics of MSW including the components of settlement and the settlement model parameters. Chapter 5 presents the determination of the shear strength properties of MSW using direct shear tests and triaxial tests. The variation of the strength with respect to unit weight and the particle size is examined. The results are examined in terms of strength ratio and stiffness ratio and the implications are discussed. Chapter 6 presents the study of the dynamic characters of MSW. The variation of the shear modulus and damping ratio with respect to unit weight, confining pressure, loading frequency, decomposition and moisture content are analyzed. Normalized shear modulus reduction and damping curves are proposed for seismic analysis. Chapter 7 presents the study of the conventional and the bioreactor landfill in a small scale laboratory setup. A large scale experimental setup is fabricated to study the characteristics of a bioreactor landfill and includes the long term monitoring and analysis of temperature, gas, settlement and leachate characteristics periodically. The results of the comprehensive study are presented in this chapter. Chapter 8 summarizes the important conclusions from the various experimental studies reported in this dissertation. Conclusions and the scope of future work are presented. A detailed list of references and the list of publications from the thesis are presented at the end. Appendix A presents the life cycle analysis and life cycle cost analysis of MSW land disposal options. The land disposal options such as open dumps, engineered landfills and bioreactor landfills are analyzed in this study.
16

Modélisation des écoulements diphasiques bioactifs dans les installations de stockage de déchets / Modeling two-phase bioactive flow in bioreactor landfills

Gholamifard, Shabnam 02 February 2009 (has links)
Accélérer la dégradation anaérobie des déchets enfouis, optimiser la production de biogaz et diminuer le temps et le coût de surveillance sont les enjeux principaux d'installation de stockage des déchets non dangereux (ISDND)-bioactives, ainsi que, plus classiquement, minimiser leurs impacts sanitaires et environnementaux. L'une des méthodes les plus efficaces pour atteindre ces objectifs est la recirculation de lixiviat et l'augmentation de l'humidité des déchets. Les objectifs du bioréacteur ne seront pas atteints sans une connaissance rationnelle des phénomènes hydrauliques, biologiques et thermiques qui s’y développent et de l’influence de l'un de ces phénomènes sur les autres. Les observations in situ, les expérimentations en laboratoire ainsi que les modèles numériques permettent ensemble une approche rationnelle de ces phénomènes. C’est ce qui constitue le corps de ce travail de thèse, où nous avons étudié le comportement hydro-thermo-biologique des déchets dans la phase anaérobie en laboratoire, sur site à partir de données hydro-thermiques de deux bioréacteurs situés en France et en développant un modèle numérique pour simuler ce comportement couplé des bioréacteurs. Les travaux en laboratoire nous ont permis d’étudier l’effet de la saturation et de la densité (compactage des déchets) sur la dégradation anaérobie des déchets ménagers et l’influence de ces paramètres sur la production de biogaz. Les données hydrauliques et thermiques in-situ des bioréacteurs nous ont permis de connaître les variations des paramètres essentiels comme la température et la saturation dans les déchets, à différentes profondeurs, et estimer d’autres paramètres qui sont difficile à déterminer expérimentalement. Le modèle numérique nous a permis d’étudier le comportement couplé, hydro-thermo-biologique, des bioréacteurs à long terme (pendant une dizaine d’années) aussi bien qu’à court terme pendant la recirculation de lixiviat. L’interdépendance des différents paramètres qui influent la dégradation des déchets est la principale raison nous ayant conduits à développer un modèle de couplage qui nous permette d'étudier chaque paramètre en fonction des autres. Les travaux en laboratoire et les données thermiques de site nous ont conduits à développer un modèle d'écoulement diphasique du liquide et du gaz dans les déchets, considérant les phénomènes biologiques, en fonction des paramètres clés de la dégradation comme la température et la saturation, pour aboutir à la production de biogaz et de chaleur. Les trois parties de ce travail, les expérimentations en laboratoire, le développement d'un modèle numérique et l’analyse des données de site ont été effectuées en parallèle de façon complémentaire. Les expérimentation de laboratoire tout comme l’analyse des données de site, nous ont montré l'importance des paramètres qu'il faut considérer dans le modèle et en retour le modèle numérique nous a aidé à diriger les expérimentations en laboratoire et montré la nécessité de conduire certaines analyses sur les pilotes expérimentaux, comme l’analyse de la biomasse, de la DCO et des AGV. L'analyse des données hydrauliques et thermiques de sites de bioréacteur nous a permis de caler les paramètres hydrauliques, biologiques et thermiques des déchets qui sont difficile à définir sur le site sans le perturber (comme la conductivité hydraulique, la saturation, la conductivité thermique, la capacité calorifique, la concentration en biomasse et en AGV). Le travail réalisé dans la thèse a permis de développer un modèle couplé hydro-thermo-biologique et de tester sa capacité à prévoir le comportement thermique d'un bioréacteur, la production totale et le taux de production de méthane. Nous avons montré qu'il était adopté à l'étude du comportement à long terme d'un bioréacteur, aussi bien qu'à court terme pendant la réinjection de lixiviat, là où les techniques de mesure et le temps sont limitants en laboratoire ou sur site / The main objectives of bioreactor landfills are to accelerate anaerobic degradation of waste in order to minimize the environmental impacts, to optimize biogas production and to minimize the time of waste stabilization as well as the costs and time of monitoring of landfill sites after operation. One of the most important and cost-effective method to achieve these objectives is liquid addition and management. The objectives of bioreactor landfills could not be achieved without enough knowledge of its hydraulic, thermal and biological parameters and processes and the effects of each of them on the others. Site observations and data and laboratory experiments as well as numerical models could help to develop the knowledge of these phenomena and processes, which is the objective of this work. In this thesis we study the coupled hydro-thermo-biological behavior of bioreactor landfills in the anaerobic phase in the laboratory and using site data of two bioreactor landfills in France and developing a numerical coupled model. The laboratory experiments help us to know the effect of such important parameters as saturation and density of wastes on anaerobic degradation and biogas production. The site data help us to know the variations of saturation and temperature of wastes in a bioreactor landfill in different depths, as two key factors of anaerobic degradation and biogas production. Site analysis helps also to estimate some parameters as hydraulic and thermal conductivity of wastes, which are hard to measure in situ without disturbing the landfill site. The numerical model helps us to study the coupled behavior of bioreactor landfills during leachate recirculation, as well as on the long term during many years. The interdependence of various parameters which influence waste degradation and thermo-biological phenomena in a bioreactor landfills is the main reason of development of this coupled model. This model makes it possible to study each key parameter, as saturation and temperature, as a function of other parameters. Laboratory experiments and site data analysis lead to develop a biological model of degradation to be coupled with a two-phase flow model of liquid and gas. The three parts of this thesis, laboratory experiments, site data analysis and development of the numerical coupled model were carried out in parallel and in a complementary manner. Laboratory experiments as well as site data analysis showed us the importance of some parameters to be considered in the numerical model and coupled behavior. In return numerical model showed the importance of considering the temperature dependence behavior of microbial activity and the necessity of biomass, VFA and COD analysis in laboratory experiments. The analysis of hydraulic and thermal site data led to estimate parameters which are hard to measure in situ or in the laboratory, as hydraulic and thermal conductivity of waste, saturation, thermal conductivity of cover layer and heat capacity of waste. The numerical coupled hydro-thermo-biological model seems to be efficient enough to predict biogas and methane production in bioreactor and classical landfills and to reproduce their correct behavior

Page generated in 0.0744 seconds