• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 3
  • 1
  • Tagged with
  • 48
  • 34
  • 19
  • 18
  • 18
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Balancing the Water Budget: the effect of plant functional type on infiltration to harvest ratios in stormwater bioretention cells

Krauss, Lauren Marie 19 January 2021 (has links)
Stormwater bioretention cells (BRCs) are a variety of green stormwater infrastructure with the potential to restore pre-urban water balance, provided they can be tailored to infiltrate and evapotranspire (i.e., harvest) urban runoff in proportions consistent with pre-urban hydrologic conditions. This paper evaluates their capacity to do so, focusing on evapotranspirative harvest, which is relatively understudied, and the capacity of CSR (Competitve, Stress-tolerant, and Ruderal) functional type to serve as an overarching framework characterizing the water use strategy of BRC plants. The goal is to determine if harvest (and therefore the ratio of urban runoff infiltrated to harvested; the I:H ratio) might be fine-tuned to meet pre-urban values in BRCs through informed manipulation of plant community composition. This study focuses on 3 critical plant water use traits, the turgor loss point, the point of incipient water stress, and maximum stomatal conductance. A global plant traits meta-analysis identified degree of plant competitiveness and stress tolerance as significant determinants of all three water use traits, with stem type (woody vs herbaceous) also being significant, but only for turgor loss point. Based on these results, six water use scenarios appropriate for plants with different CSR type/stem type combinations were developed. BRC plants spanning the range of CSR types necessary to actionize these scenarios were determined to be available in eight major climate zones of the coterminous US, suggesting that regulating plant water use in BRCs using CSR is likely feasible. Hydraulic simulations (Hydrus 1D) were conducted for each scenario in all eight climate zones and revealed significant differences in evapotranspirative harvest and I:H ratios in simulated BRCs. Competitive woody plants had the highest evapotranspiration and lowest I:H ratios; 1.5-1.8 times more evapotranspiration and a 1.6-2 times lower I:H ratio than stress tolerant herbaceous plants, on average, across climate zones. Despite these significant differences, no simulated BRC in any climate zone was capable of reproducing pre-urban I:H ratios, regardless of plant type. More water was infiltrated than harvested in all scenarios and climates with the inverse being true for all pre-urban conditions. This suggests that absent additional sources of harvest (e.g., use of BRC water for nonpotable purposes such as toilet flushing and outdoor irrigation, or adoption of novel BRC designs that promote lateral exfiltration, stimulating "extra" evapotranspiration from nearby landscapes), BRCs will be unable to restore pre-urban water balance on their own. If true, then using BRCs in combination with other green technologies (particularly those biased towards harvest), may be the best path forward for balancing urban water budgets. / Master of Science / Stormwater bioretention cells (BRCs) are a variety of green infrastructure designed to manage urban stormwater flows that can dramatically reduce the amount of stormwater that is rapidly (and unnaturally) conveyed from paved surfaces to ecosystems. Their ability to recreate natural flow conditions is dependent on them balancing rates of infiltration – slowly filtering water down to the water table – and evapotranspiration – letting plants capture and transpire water. This paper evaluates the extent to which different plant functional types (competitive, stress tolerant, and ruderal (weedy)) can be used to regulate this balance, bringing urban hydrologic conditions closer to pre-urban ones. Competitiveness and stress tolerance were found to significantly influence plant water use traits, as was plant stem type (woody vs herbaceous) to a lesser extent (i.e., managing water budgets using CSR functional type is theoretically possible). Published BRC vegetation guidelines in 8 major US climate zones were found to include both competitive and stress tolerant species (i.e., the range of functional types required to regulate BRC water balance exists, suggesting it is feasible). Finally, hydraulic simulations conducted under six plant water use scenarios (reflecting different CSR types and stem types) revealed significant differences in the ratio of water infiltrated to evapotranspired by BRCs (i.e., changing plant functional types can meaningfully influence BRC water balance). This said, the magnitude of this effect may be insufficient to return urban catchments to a pre-urban state. All BRCs infiltrated too much water in our simulations suggesting that absent additional sources of harvest (for instance., use of BRC water for nonpotable purposes such as toilet flushing or outdoor irrigation), BRCs will be unable to restore pre-urban water balance on their own. If true, then using BRCs in combination with other green technologies (particularly those biased towards harvest), may be the best path forward for balancing urban water budgets.
42

Biorretenção: tecnologia ambiental urbana para manejo das águas de chuva / Bioretention urban environmental technology for stormwater management

Moura, Newton Celio Becker de 10 March 2014 (has links)
Em caráter experimental, a tese examina o desempenho de sistemas de biorretenção na mitigação da poluição difusa ocasionada pelas águas de chuva. A avaliação dessa tecnologia ambiental urbana partiu da construção de um modelo de manejo dos escoamentos pluviais, utilizando uma matriz orgânica composta por vegetação, solo e agregados para retenção e tratamento inicial localizados. O protótipo, em escala 1:1, implementado na Cidade Universitária Armando Salles de Oliveira (CUASO-USP), São Paulo, SP, é composto por dois canteiros isolados entre si, que recebem as vazões através da sarjeta na via adjacente. Com preenchimentos iguais, os canteiros receberam coberturas vegetais distintas: gramado (G), com uma única espécie de gramínia, e jardim (J), com forrações, herbáceas e arbustos diversos, predominantemente nativos. O experimento foi monitorado por um ano, entre março de 2012 e março de 2013, quando foram coletados os dados referentes ao seu funcionamento e eficiência em sete eventos chuvosos paulistanos. A compilação dessas informações permitiu a análise comparativa da qualidade da água dos escoamentos antes e depois da passagem pelos canteiros. Com recursos da FUNDEP, FCTH e LabVERDE, a pesquisa interdepartamental e interdisciplinar, desenvolvida numa cooperação entre a FAU-USP e a Escola Politécnica-USP, busca oferecer respostas às hipóteses com que trabalha a Arquitetura da Paisagem ao propor soluções naturalizadas de manejo dos escoamentos pluviais em complementação às técnicas convencionais atualmente empregadas nas cidades brasileiras, tomando a cidade de São Paulo como cenário. Como efeito do processo histórico de canalização do seu patrimônio hídrico, ocupação das áreas de várzea e impermeabilização, a população paulistana e da RMSP tem sofrido com enchentes que se agravam com o crescimento urbano e com a intensificação das chuvas. As soluções imediatistas para essa situação crítica seguem a práxis das obras convencionais de engenharia, que segregam a drenagem urbana dos processos ecológicos e hidrológicos e não contribuem para melhoria da qualidade ambiental dos escoamentos antes de destiná-los aos corpos hídricos superficiais, o que agrava o quadro generalizado de poluição dos rios e córregos urbanos. Os resultados do experimento prático atestam o desempenho da biorretenção na mitigação da poluição difusa, com reduções médias das cargas poluidoras acumuladas de 89,94% para o gramado e 95,49% para o jardim, que foi comprovadamente mais eficiente. Aliados ao estudo de tipologias paisagísticas já utilizadas com sucesso em outras cidades do mundo, esses resultados poderão corroborar o processo de transição na infraestrutura de São Paulo, respaldando tecnicamente e cientificamente as soluções investigadas de manejo das águas de chuva através da biorretenção no tratamento dos espaços abertos e na conformação de uma Infraestrutura Verde na cidade. / This thesis experimentally assesses the performance of bioretention systems in mitigating nonpoint-source pollution caused by runoff. A 1:1 scale experiment of a stormwater management facility was built in USP Campus based in São Paulo, SP. This prototype has been evaluated for one year, since March 2012, over its technical efficiency to improve water quality by analyzing runoff samples collected in its inlet and outlet. Combining landscape architecture and hydraulic engineering knowledge, this experiment consists of two independent vegetated plots connected to the gutter through a concrete channel, which drives the runoff into the facility from the avenue next to it. Each plot has its own spillway, where samples were collected for laboratory analysis under 22 water quality parameters and thus compared to gutter runoff. Regarding construction techniques, it was decided to apply simplified solutions without unnecessary expenses, but that ensured feasibility, solidity and isolation to the plots from the ground on all faces. As for filling the model, it was chosen to use the same material for both facilities, laid out from bottom to surface: 60cm of broken rocks, 15cm of gravel, coconut geotextile fabric, 5cm of coarse sand and, finally, 45 to 75cm of planting substrate with side slopes and covered with mulch. Regarding vegetation cover, two sets of plants have been used in the bioretention cells as a research strategy to compare the efficiency among different models in stormwater management, considering other issues in addition to improving the environmental quality of water, such as maintenance, adaptation and development of species and visual interest. Thus, the experiment plots were filled with the same substrate but with different vegetable toppings, according to the following configuration: mixed garden (M) - ground covers with predominance of native shrubs and herbaceous vegetation, and lawn (L) - covered only with emerald grass carpet (Zoysia japonica), which has been extensively used for lawns all over the country. This experimental model has provided scientific answers that attest the effectiveness of techniques using vegetated surfaces to retain and treat stormwater. Its results have attested the performance of bioretention for diffuse pollution mitigation, with average reductions of accumulated pollutant loads of 89.94% in the lawn (L) and 95.49% in the mixed garden (M), which wasproven to be more efficient. This research developed by USP Faculty of Architecture and Urbanism in partnership with Polythecnic School, does not aim to threat conventional methods of urban drainage in local cities, but to join them in the efforts of reaching solutions and technical knowledge that are suitable for urban ecosystems and harmless to environment and landscape.
43

Biorretenção: tecnologia ambiental urbana para manejo das águas de chuva / Bioretention urban environmental technology for stormwater management

Newton Celio Becker de Moura 10 March 2014 (has links)
Em caráter experimental, a tese examina o desempenho de sistemas de biorretenção na mitigação da poluição difusa ocasionada pelas águas de chuva. A avaliação dessa tecnologia ambiental urbana partiu da construção de um modelo de manejo dos escoamentos pluviais, utilizando uma matriz orgânica composta por vegetação, solo e agregados para retenção e tratamento inicial localizados. O protótipo, em escala 1:1, implementado na Cidade Universitária Armando Salles de Oliveira (CUASO-USP), São Paulo, SP, é composto por dois canteiros isolados entre si, que recebem as vazões através da sarjeta na via adjacente. Com preenchimentos iguais, os canteiros receberam coberturas vegetais distintas: gramado (G), com uma única espécie de gramínia, e jardim (J), com forrações, herbáceas e arbustos diversos, predominantemente nativos. O experimento foi monitorado por um ano, entre março de 2012 e março de 2013, quando foram coletados os dados referentes ao seu funcionamento e eficiência em sete eventos chuvosos paulistanos. A compilação dessas informações permitiu a análise comparativa da qualidade da água dos escoamentos antes e depois da passagem pelos canteiros. Com recursos da FUNDEP, FCTH e LabVERDE, a pesquisa interdepartamental e interdisciplinar, desenvolvida numa cooperação entre a FAU-USP e a Escola Politécnica-USP, busca oferecer respostas às hipóteses com que trabalha a Arquitetura da Paisagem ao propor soluções naturalizadas de manejo dos escoamentos pluviais em complementação às técnicas convencionais atualmente empregadas nas cidades brasileiras, tomando a cidade de São Paulo como cenário. Como efeito do processo histórico de canalização do seu patrimônio hídrico, ocupação das áreas de várzea e impermeabilização, a população paulistana e da RMSP tem sofrido com enchentes que se agravam com o crescimento urbano e com a intensificação das chuvas. As soluções imediatistas para essa situação crítica seguem a práxis das obras convencionais de engenharia, que segregam a drenagem urbana dos processos ecológicos e hidrológicos e não contribuem para melhoria da qualidade ambiental dos escoamentos antes de destiná-los aos corpos hídricos superficiais, o que agrava o quadro generalizado de poluição dos rios e córregos urbanos. Os resultados do experimento prático atestam o desempenho da biorretenção na mitigação da poluição difusa, com reduções médias das cargas poluidoras acumuladas de 89,94% para o gramado e 95,49% para o jardim, que foi comprovadamente mais eficiente. Aliados ao estudo de tipologias paisagísticas já utilizadas com sucesso em outras cidades do mundo, esses resultados poderão corroborar o processo de transição na infraestrutura de São Paulo, respaldando tecnicamente e cientificamente as soluções investigadas de manejo das águas de chuva através da biorretenção no tratamento dos espaços abertos e na conformação de uma Infraestrutura Verde na cidade. / This thesis experimentally assesses the performance of bioretention systems in mitigating nonpoint-source pollution caused by runoff. A 1:1 scale experiment of a stormwater management facility was built in USP Campus based in São Paulo, SP. This prototype has been evaluated for one year, since March 2012, over its technical efficiency to improve water quality by analyzing runoff samples collected in its inlet and outlet. Combining landscape architecture and hydraulic engineering knowledge, this experiment consists of two independent vegetated plots connected to the gutter through a concrete channel, which drives the runoff into the facility from the avenue next to it. Each plot has its own spillway, where samples were collected for laboratory analysis under 22 water quality parameters and thus compared to gutter runoff. Regarding construction techniques, it was decided to apply simplified solutions without unnecessary expenses, but that ensured feasibility, solidity and isolation to the plots from the ground on all faces. As for filling the model, it was chosen to use the same material for both facilities, laid out from bottom to surface: 60cm of broken rocks, 15cm of gravel, coconut geotextile fabric, 5cm of coarse sand and, finally, 45 to 75cm of planting substrate with side slopes and covered with mulch. Regarding vegetation cover, two sets of plants have been used in the bioretention cells as a research strategy to compare the efficiency among different models in stormwater management, considering other issues in addition to improving the environmental quality of water, such as maintenance, adaptation and development of species and visual interest. Thus, the experiment plots were filled with the same substrate but with different vegetable toppings, according to the following configuration: mixed garden (M) - ground covers with predominance of native shrubs and herbaceous vegetation, and lawn (L) - covered only with emerald grass carpet (Zoysia japonica), which has been extensively used for lawns all over the country. This experimental model has provided scientific answers that attest the effectiveness of techniques using vegetated surfaces to retain and treat stormwater. Its results have attested the performance of bioretention for diffuse pollution mitigation, with average reductions of accumulated pollutant loads of 89.94% in the lawn (L) and 95.49% in the mixed garden (M), which wasproven to be more efficient. This research developed by USP Faculty of Architecture and Urbanism in partnership with Polythecnic School, does not aim to threat conventional methods of urban drainage in local cities, but to join them in the efforts of reaching solutions and technical knowledge that are suitable for urban ecosystems and harmless to environment and landscape.
44

Assessment of Bioretention Performance for Hydrology and Hydrocarbons

Tamkin, Abigail 08 July 2019 (has links)
No description available.
45

Estimation of stormwater runoff mitigation in Lucas County, Ohio using SWMM modeling and GIS analysis

Dietrich, Anthony Thomas January 2015 (has links)
No description available.
46

Bioretention: Evaluating their Effectiveness for Improving Water Quality in New England Urban Environments

Dehais, Mary 01 January 2011 (has links) (PDF)
Nonpoint source (NPS) pollution is one of the leading causes of water quality problems in the United States. Bioretention has become one of the more frequently used stormwater management practices for addressing NPS pollution in urbanized watersheds in New England. Yet despite increased acceptance, bioretention is not widely practiced. This study explores and evaluates the efficacy of bioretention for protecting urban water quality. This research found that numerous monitoring methods are used by researchers and industry experts to assess the effectiveness of stormwater best management practices (BMPs) and low impact development (LID) practices that include bioretention. The two most common methods for analyzing and evaluating water quality data are pollutant removal efficiency and effluent quality. While effluent quality data is useful for characterizing classes of BMP treatment performance on a statistical basis, pollutant removal efficiency is more representative of the actual pollutant load being reduced by the stormwater treatment practice over time, and is used in Total Maximum Daily Load (TMDL) assessments. However, despite this difference, monitoring is still arguably the best method for determining the effectiveness of stormwater treatment practices. Monitoring of bioretention performance results is needed to inform improvements to design standards and guidance to aid state and local municipalities in the proper selection of bioretention/stormwater controls. This study advocates for instituting fine-scale, “safe-to-fail” design experiments as part of an adaptive management process that is used to advance bioretention design guidance and future applications of monitoring practice(s) that target reduction of pollutants in downstream receiving waterbodies. This innovative approach could result in increased use of bioretention in New England urban environments.
47

Evaluation Of Biosorption Activated Media Under Roadside Swales For Stormwater Quality Improvement And Harvesting

Hood, Andrew Charles 01 January 2012 (has links)
Stormwater runoff from highways is a source of pollution to surface water bodies and groundwater. This project develops a bio-detention treatment and harvesting system that is incorporated into roadside swales. The bio-detention system uses Bold & Gold™, a type of biosorption activated media (BAM), to remove nutrients from simulated highway runoff and then store the water in underground vaults for infiltration, controlled discharge, and/or irrigation and other non-potable applications. In order to design a bio-detention system, media characteristics and media/water quality relationships are required. Media characteristics determined through testing include: specific gravity, permeability, infiltration, maximum dry density, moisture content of maximum dry density, and particle-size distribution. One of the goals of this experiment is to compare the nitrogen and phosphorous species concentrations in the effluent of BAM to sandy soil for simulated highway runoff. Field scale experiments are done on an elevated test bed that simulates a typical roadway with a swale. The swale portion of the test bed is split into halves using BAM and sandy soil. The simulated stormwater flows over a concrete section, which simulates a roadway, and then over either sod covered sandy soil or BAM. One, one and a half, and three inch storms are each simulated three times with a duration of 30 minutes each. During the simulated storm event, initial samples of the runoff (influent) are taken. The test bed is allowed to drain for two hours after the rainfall event and then samples of each of the net effluents are taken. In addition to the field scale water quality testing, column tests are also preformed on the sandy soil and Bold & Gold™ without sod present. Sod farms typically use fertilizer to increase production, thus it is reasonable to assume that the sod will leach nutrients into the soils on the iv test bed, especially during the initial test runs. The purpose of the column tests is to obtain a general idea of what percentage removals of total phosphorus and total nitrogen are obtained by the sandy soil and Bold & Gold™. It is shown that the Bold & Gold™ media effluent has significantly lower concentrations of total nitrogen and total phosphorus compared to the effluent of the sandy soil based on an 80% confidence level. The Bold & Gold™ has a 41% lower average effluent concentration of total nitrogen than the sandy soil. The Bold & Gold™ media has a 78% lower average effluent concentration of total phosphorus than the sandy soil. Using both the column test data in combination with the field scale data, it is determined that the Bold & Gold™ BAM system has a total phosphorus removal efficiency of 71%. The removal efficiency is increased when stormwater harvesting is considered. A total phosphorus reduction of 94% is achieved in the bio-detention & harvesting swale system sample design problem
48

Comparing bioretention cell and green roof performance in Parma, OH

Sugano, Laura, Sugano 07 May 2018 (has links)
No description available.

Page generated in 0.0899 seconds