Spelling suggestions: "subject:"dipolaire parasite"" "subject:"bipolaire parasite""
1 |
Contribution à la modélisation électrothermique : Elaboration d'un modèle électrique thermosensible des composants MOS de puissance / Contribution to electrothermal modeling : Development of a thermosensitive electrical model for power MOS transistorsDia, Hussein 12 July 2011 (has links)
Une forte exigence de robustesse s’est imposée dans tous les domaines d’application des composants de puissance. Dans ce cadre très contraint, seule une analyse fine des phénomènes liés directement ou indirectement aux défaillances peut garantir une maîtrise de la fiabilité des fonctions assurées par les nouveaux composants de puissance. Cependant, ces phénomènes impliquent des couplages entre des effets électriques, thermiques et mécaniques, rendant leur étude très complexe. Le recours à la modélisation multi-physique bien adaptée s’avère alors déterminant. Dans ce mémoire de thèse, nous proposons une méthodologie de modélisation électrique prenant en compte les effets de la température sur les phénomènes localisés qui initient une défaillance souvent fatale. En prévision de la simulation électrothermique couplée impliquant des transistors MOS de puissance, un modèle électrique thermosensible de ce composant et de sa diode structurelle a été développé. Corrélativement un ensemble de bancs expérimentaux a été mis en œuvre pour l’extraction des paramètres et pour la validation du modèle. Une attention particulière a été accordée à l’étude des phénomènes parasites qui pourraient survenir de manière très localisée suite à une répartition inhomogène de la température et à l’apparition de points chauds. Ainsi les fonctionnements limites en avalanche, avec le déclenchement du transistor bipolaire parasite et de son retournement ont été modélisés. Des bancs spécifiques pour la validation du modèle pour les régimes extrêmes ont été utilisés en prenant des précautions liées à la haute température. Enfin, Le modèle électrique thermosensible complet développé a été utilisé par la société Epsilon ingénierie pour faire des simulations électrothermiques du MOS de puissance en mode d’avalanche en adaptant le logiciel Epsilon-R3D / Strong demand for robustness has emerged in all areas of application of power components.Only a detailed analysis of phenomena related directly or indirectly to failures can ensure thereliability of the functions of the new power components. However, these phenomena involvethe coupling between electrical effects, thermal and mechanical, making their study verycomplex. The use of multi-physics modeling is well suited when determining. In this thesis,we propose a methodology for electrical modeling taking into account the effects of temperatureon the localized phenomena that initiate failure is often fatal. In preparation for thecoupled electro-thermal simulation involving MOS power transistors, an electric thermosensitivemodel of the MOS and its body diode has been developed. Correspondingly a set ofexperimental studies was implemented to extract the parameters and model validation. Particularattention was paid to the study of interference phenomena that could occur in a localizedresponse to an inhomogeneous distribution of temperature and hot spots. Thus the workingslimits avalanche, with the outbreak of parasitic bipolar transistor (snapback) and its reversalwere modeled. Benches specific validations of the model for harsh switching conditions wereused by taking precautions related to high temperature. Finally, the complete thermal electricmodel developed was used by the company “EPSILON Ingénierie” for electro-thermal simulationof power MOS mode Avalanche Software adapting Epsilon-R3D.
|
2 |
Mécanismes d'injection de porteurs minoritaires dans les circuits intégrés de puissance et structures de protections associéesLAINE, Jean Philippe 15 December 2003 (has links) (PDF)
Les travaux de recherche présentés dans ce mémoire s'inscrivent dans le contexte du problème d'isolation par jonction dans les circuits intégrés de puissance. Certains modes de fonctionnement du bloc de puissance induisent une injection conséquente de courant parasite dans le substrat. La plus contraignante est l'injection de porteurs minoritaires. Nous en détaillons l'origine ainsi que ses conséquences dangereuses sur les circuits intégrés. Nous présentons les solutions de protection existantes destinées à réduire ce courant parasite. Avec la réduction des dimensions des nouvelles technologies, ces solutions de protection ne sont plus adaptées en raison de leur dimension. Nous proposons donc une méthodologie de conception basée sur la simulation physique 3D et la simulation électrique pour créer ou adapter des structures de protections selon la filière technologique utilisée. Avant de les développer, nous proposons d'étudier les mécanismes d'injection de ces porteurs minoritaires selon la nature du substrat utilisé. Ainsi, dans un substrat P+, des techniques de protection simples, c'est-à-dire les protections passives par anneaux de garde, peuvent réduire considérablement le courant parasite. Dans un substrat P-, des techniques de protection plus complexes doivent être développées. Nous avons proposé des structures de protections actives. Son efficacité contre le courant parasite est validée par la caractérisation de structures de test spécifiques. Une solution de protection intégrée dans le composant de puissance améliorant également la robustesse vis-à-vis des décharges électrostatiques, a été validée sur silicium et a fait l'objet d'un brevet.
|
3 |
Contribution à la modélisation électrothermique: Elaboration d'un modèle électrique thermosensible du transistor MOSFET de puissanceDia, Hussein 12 July 2011 (has links) (PDF)
Une forte exigence de robustesse s'est imposée dans tous les domaines d'application des composants de puissance. Dans ce cadre très contraint, seule une analyse fine des phénomènes liés directement ou indirectement aux défaillances peut garantir une maîtrise de la fiabilité des fonctions assurées par les nouveaux composants de puissance. Cependant, ces phénomènes impliquent des couplages entre des effets électriques, thermiques et mécaniques, rendant leur étude très complexe. Le recours à la modélisation multi-physique bien adaptée s'avère alors déterminant. Dans ce mémoire de thèse, nous proposons une méthodologie de modélisation électrique prenant en compte les effets de la température sur les phénomènes localisés qui initient une défaillance souvent fatale. En prévision de la simulation électrothermique couplée impliquant des transistors MOS de puissance, un modèle électrique thermosensible de ce composant et de sa diode structurelle a été développé. Corrélativement un ensemble de bancs expérimentaux a été mis en oeuvre pour l'extraction des paramètres et pour la validation du modèle. Une attention particulière a été accordée à l'étude des phénomènes parasites qui pourraient survenir de manière très localisée suite à une répartition inhomogène de la température et à l'apparition de points chauds. Ainsi les fonctionnements limites en avalanche, avec le déclenchement du transistor bipolaire parasite et de son retournement ont été modélisés. Des bancs spécifiques pour la validation du modèle pour les régimes extrêmes ont été utilisés en prenant des précautions liées à la haute température. Enfin, Le modèle électrique thermosensible complet développé a été utilisé par la société EPSILON Ingénierie pour faire des simulations électrothermiques du MOS de puissance en mode d'avalanche en adaptant le logiciel Epsilon-R3D.
|
4 |
Caractérisation électrique et modélisation du transport dans matériaux et dispositifs SOI avancés / Electrical characterization and modeling of advanced SOI materials and devicesLiu, Fanyu 05 May 2015 (has links)
Cette thèse est consacrée à la caractérisation et la modélisation du transport électronique dans des matériaux et dispositifs SOI avancés pour la microélectronique. Tous les matériaux innovants étudiés(ex: SOI fortement dopé, plaques obtenues par collage etc.) et les dispositifs SOI sont des solutions possibles aux défis technologiques liés à la réduction de taille et à l'intégration. Dans ce contexte,l'extraction des paramètres électriques clés, comme la mobilité, la tension de seuil et les courants de fuite est importante. Tout d'abord, la caractérisation classique pseudo-MOSFET a été étendue aux plaques SOI fortement dopées et un modèle adapté pour l'extraction de paramètres a été proposé. Nous avons également développé une méthode électrique pour estimer la qualité de l'interface de collage pour des plaquettes métalliques. Nous avons montré l'effet bipolaire parasite dans des MOSFET SOI totalement désertés. Il est induit par l’effet tunnel bande-à-bande et peut être entièrement supprimé par une polarisation arrière. Sur cette base, une nouvelle méthode a été développée pour extraire le gain bipolaire. Enfin, nous avons étudié l'effet de couplage dans le FinFET SOI double grille, en mode d’inversion. Un modèle analytique a été proposé et a été ensuite adapté aux FinFETs sans jonction(junctionless). Nous avons mis au point un modèle compact pour le profil des porteurs et des techniques d’extraction de paramètres. / This thesis is dedicated to the electrical characterization and transport modeling in advanced SOImaterials and devices for ultimate micro-nano-electronics. SOI technology is an efficient solution tothe technical challenges facing further downscaling and integration. Our goal was to developappropriate characterization methods and determine the key parameters. Firstly, the conventionalpseudo-MOSFET characterization was extended to heavily-doped SOI wafers and an adapted modelfor parameters extraction was proposed. We developed a nondestructive electrical method to estimatethe quality of bonding interface in metal-bonded wafers for 3D integration. In ultra-thin fully-depletedSOI MOSFETs, we evidenced the parasitic bipolar effect induced by band-to-band tunneling, andproposed new methods to extract the bipolar gain. We investigated multiple-gate transistors byfocusing on the coupling effect in inversion-mode vertical double-gate SOI FinFETs. An analyticalmodel was proposed and subsequently adapted to the full depletion region of junctionless SOI FinFETs.We also proposed a compact model of carrier profile and adequate parameter extraction techniques forjunctionless nanowires.
|
Page generated in 0.0777 seconds