Spelling suggestions: "subject:"bipower variation"" "subject:"ipower variation""
1 |
Financial Market Volatility and JumpsHuang, Xin 07 May 2007 (has links)
This dissertation consists of three related chapters that study financial market volatility,
jumps and the economic factors behind them. Each of the chapters analyzes a
different aspect of this problem.
The first chapter examines tests for jumps based on recent asymptotic results.
Monte Carlo evidence suggests that the daily ratio z-statistic has appropriate size,
good power, and good jump detection capabilities revealed by the confusion matrix
comprised of jump classification probabilities. Theoretical and Monte Carlo analysis
indicate that microstructure noise biases the tests against detecting jumps, and that
a simple lagging strategy corrects the bias. Empirical work documents evidence for
jumps that account for seven percent of stock market price variance.
Building on realized variance and bi-power variation measures constructed from
high-frequency financial prices, the second chapter proposes a simple reduced form
framework for modelling and forecasting daily return volatility. The chapter first
decomposes the total daily return variance into three components, and proposes
different models for the different variance components: an approximate long-memory
HAR-GARCH model for the daytime continuous variance, an ACH model for the
jump occurrence hazard rate, a log-linear structure for the conditional jump size,
and an augmented GARCH model for the overnight variance. Then the chapter
combines the different models to generate an overall forecasting framework, which
improves the volatility forecasts for the daily, weekly and monthly horizons.
The third chapter studies the economic factors that generate financial market
volatility and jumps. It extends the recent literature by separating market responses
into continuous variance and discontinuous jumps, and differentiating the market’s
disagreement and uncertainty. The chapter finds that there are more large jumps on
news days than on no-news days, with the fixed-income market being more responsive
than the equity market, and non-farm payroll employment being the most influential
news. Surprises in forecasts impact volatility and jumps in the fixed-income market
more than the equity market, while disagreement and uncertainty influence both
markets with different effects on volatility and jumps.
JEL classification: C1, C2, C5, C51, C52, F3, F4, G1, G14 / Dissertation
|
2 |
Testing for jumps in face of the financial crisis : Application of Barndorff-Nielsen - Shephard test and the Kou modelPszczola, Agnieszka, Walachowski, Grzegorz January 2009 (has links)
<p>The purpose of this study is to identify an impact on an option pricing within NASDAQ OMX Stockholm Market, if the underlying</p><p>asset prices include jumps. The current financial crisis, when jumps are much more evident than ever, makes this issue very actual and important in the global sense for the portfolio hedging and other risk management applications for example for the banking sector. Therefore, an investigation is based on OMXS30 Index and SEB A Bank. To detect jumps the Barndorff-Nielsen and Shephard non-parametric bipower variation test is used. First it is examined on simulations, to be finally implemented on the real data. An affirmation of a jumps occurrence requires to apply an appropriate model for the option pricing. For this purpose the Kou model, a double exponential jump-diffusion one, is proposed, as it incorporates essential stylized facts not available for another models. Th parameters in the model are estimated by a new approach - a combined cumulant matching with lambda taken from the Barrndorff-Nielsen and Shephard test. To evaluate how the Kou model manages on the option pricing, it is compared to the Black-Scholes model and to the real prices of European call options from the Stockholm Stock Exchange. The results show that the Kou model outperforms the latter.</p>
|
3 |
Testing for jumps in face of the financial crisis : Application of Barndorff-Nielsen - Shephard test and the Kou modelPszczola, Agnieszka, Walachowski, Grzegorz January 2009 (has links)
The purpose of this study is to identify an impact on an option pricing within NASDAQ OMX Stockholm Market, if the underlying asset prices include jumps. The current financial crisis, when jumps are much more evident than ever, makes this issue very actual and important in the global sense for the portfolio hedging and other risk management applications for example for the banking sector. Therefore, an investigation is based on OMXS30 Index and SEB A Bank. To detect jumps the Barndorff-Nielsen and Shephard non-parametric bipower variation test is used. First it is examined on simulations, to be finally implemented on the real data. An affirmation of a jumps occurrence requires to apply an appropriate model for the option pricing. For this purpose the Kou model, a double exponential jump-diffusion one, is proposed, as it incorporates essential stylized facts not available for another models. Th parameters in the model are estimated by a new approach - a combined cumulant matching with lambda taken from the Barrndorff-Nielsen and Shephard test. To evaluate how the Kou model manages on the option pricing, it is compared to the Black-Scholes model and to the real prices of European call options from the Stockholm Stock Exchange. The results show that the Kou model outperforms the latter.
|
4 |
Dados de alta frequência : averiguando o impacto de microestrutura de mercado e sazonalidade intradiária na detecção de saltos e estimação da variação quadráticaMarmitt, Juliano January 2012 (has links)
Neste trabalho, visamos mostrar as características usuais dos dados de alta frequência, bem como utilizar modelagem não paramétrica para estimar a variância/volatilidade para esses dados. Após uma revisão sobre microestrutura de mercado, sazonalidade intradiária, variação quadrática e saltos, utilizamos os dados da PETR4 para estimar a variância realizada e variação bipotente. Determinadas essas séries, testamos se há saltos nas mesmas. Em seguida, analisamos o impacto que a microestrutura de mercado e a sazonalidade intradiária causam na detecção dos saltos. Concluímos que, enquanto a presença de microestrutura aponta para um número de saltos menor que o esperado, a sazonalidade intradiária aponta para o lado contrário, ou seja, ela causa um viés para detectar mais saltos, dada a estrutura típica da curva de volatilidade ao longo do dia em formato de J invertido, causando mais saltos incorretamente detectados no período mais volátil do dia (que corresponde a abertura da bolsa de valores). / In this work, we aim to show the usual characteristics of high-frequency data and the estimation of variance/volatility for this kind of data using nonparametric models. After reviewing concepts about market microstructure, intraday seasonality, quadratic variation and jumps, we use PETR4 data to estimate realized variance and bipower variation. With these series determined, we test for jumps. Then, we analyze the impact that market microstructure and intraday seasonality causes in jump detection. We conclude that while microstructure noise indicates fewer jumps than the ideal amount, intraday seasonality goes in the opposite direction, i.e., it detects more jumps than it should, since the typical inverted-J-shaped intraday volatility pattern tends to incorrectly detect more jumps at the most volatile period (which is when stock markets start negotiations).
|
5 |
Dados de alta frequência : averiguando o impacto de microestrutura de mercado e sazonalidade intradiária na detecção de saltos e estimação da variação quadráticaMarmitt, Juliano January 2012 (has links)
Neste trabalho, visamos mostrar as características usuais dos dados de alta frequência, bem como utilizar modelagem não paramétrica para estimar a variância/volatilidade para esses dados. Após uma revisão sobre microestrutura de mercado, sazonalidade intradiária, variação quadrática e saltos, utilizamos os dados da PETR4 para estimar a variância realizada e variação bipotente. Determinadas essas séries, testamos se há saltos nas mesmas. Em seguida, analisamos o impacto que a microestrutura de mercado e a sazonalidade intradiária causam na detecção dos saltos. Concluímos que, enquanto a presença de microestrutura aponta para um número de saltos menor que o esperado, a sazonalidade intradiária aponta para o lado contrário, ou seja, ela causa um viés para detectar mais saltos, dada a estrutura típica da curva de volatilidade ao longo do dia em formato de J invertido, causando mais saltos incorretamente detectados no período mais volátil do dia (que corresponde a abertura da bolsa de valores). / In this work, we aim to show the usual characteristics of high-frequency data and the estimation of variance/volatility for this kind of data using nonparametric models. After reviewing concepts about market microstructure, intraday seasonality, quadratic variation and jumps, we use PETR4 data to estimate realized variance and bipower variation. With these series determined, we test for jumps. Then, we analyze the impact that market microstructure and intraday seasonality causes in jump detection. We conclude that while microstructure noise indicates fewer jumps than the ideal amount, intraday seasonality goes in the opposite direction, i.e., it detects more jumps than it should, since the typical inverted-J-shaped intraday volatility pattern tends to incorrectly detect more jumps at the most volatile period (which is when stock markets start negotiations).
|
6 |
Dados de alta frequência : averiguando o impacto de microestrutura de mercado e sazonalidade intradiária na detecção de saltos e estimação da variação quadráticaMarmitt, Juliano January 2012 (has links)
Neste trabalho, visamos mostrar as características usuais dos dados de alta frequência, bem como utilizar modelagem não paramétrica para estimar a variância/volatilidade para esses dados. Após uma revisão sobre microestrutura de mercado, sazonalidade intradiária, variação quadrática e saltos, utilizamos os dados da PETR4 para estimar a variância realizada e variação bipotente. Determinadas essas séries, testamos se há saltos nas mesmas. Em seguida, analisamos o impacto que a microestrutura de mercado e a sazonalidade intradiária causam na detecção dos saltos. Concluímos que, enquanto a presença de microestrutura aponta para um número de saltos menor que o esperado, a sazonalidade intradiária aponta para o lado contrário, ou seja, ela causa um viés para detectar mais saltos, dada a estrutura típica da curva de volatilidade ao longo do dia em formato de J invertido, causando mais saltos incorretamente detectados no período mais volátil do dia (que corresponde a abertura da bolsa de valores). / In this work, we aim to show the usual characteristics of high-frequency data and the estimation of variance/volatility for this kind of data using nonparametric models. After reviewing concepts about market microstructure, intraday seasonality, quadratic variation and jumps, we use PETR4 data to estimate realized variance and bipower variation. With these series determined, we test for jumps. Then, we analyze the impact that market microstructure and intraday seasonality causes in jump detection. We conclude that while microstructure noise indicates fewer jumps than the ideal amount, intraday seasonality goes in the opposite direction, i.e., it detects more jumps than it should, since the typical inverted-J-shaped intraday volatility pattern tends to incorrectly detect more jumps at the most volatile period (which is when stock markets start negotiations).
|
7 |
Jump Detection With Power And Bipower Variation ProcessesDursun, Havva Ozlem 01 September 2007 (has links) (PDF)
In this study, we show that realized bipower variation which is an extension of realized power variation is an alternative method that estimates integrated variance like realized variance. It is seen that realized bipower variation is robust to rare jumps. Robustness means that if we add rare jumps to a stochastic volatility process, realized bipower variation process continues to estimate integrated variance although realized variance estimates integrated variance plus the quadratic variation of the jump component. This robustness is crucial since it separates the discontinuous component of quadratic variation which comes from the jump part of the logarithmic price process. Thus, we demonstrate that if the logarithmic price process is in the class of stochastic volatility plus rare jumps processes then the difference between realized variance and realized bipower variation process estimates the discontinuous component of the quadratic variation. So, quadratic variation of the jump component can be estimated and jump detection can be achieved.
|
Page generated in 0.1078 seconds