• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 16
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluating forecasts from the GARCH(1,1)-model for Swedish Equities

Hartman, Joel, Wiklander, Osvald January 2012 (has links)
No description available.
2

Modeling volatility for the Swedish stock market

Vega Ezpeleta, Emilio January 2016 (has links)
This thesis will investigate if adding an exogenous variable (implied volatility) to the variance equation will increase the performance for the GARCH(1,1) and EGARCH(1,1) models based on the OMXS30 index. These models are also compared with the implied volatility itself as a forecasting/modeling method. To evaluate the models the realized variance will be used as an unbiased estimator of the conditional variance. The findings suggest that adding implied volatility to the variance equation increase the overall performance.
3

Porozumění simultánním skokům na finančních trzích / Understanding co-jumps in financial markets

Thoma, Richard January 2016 (has links)
This thesis focuses on impact of jumps and simultaneous jumps (co-jumps) in asset prices on future volatility. Our main contribution to the empirical literature lies in the use of panel Heterogeneous Autoregressive (HAR) model that allows us to obtain average effect of jumps for both the portfolio of 29 U.S. stocks and 8 individual market sectors our stocks belong to. On top of that we investigate the effect of sign for both jumps and co-jumps. The estimation results indicate that the impact of jumps on future volatility is positive whereas for co-jumps it is negative. We also document tendency of downward jumps and co-jumps to be followed by increase in volatility and that upward jumps and co-jumps are followed by decrease in volatility. Finally, results for individual sectors reveal that estimated effects vary across industries - for cyclical sectors volatility is in general more sensitive to negative jumps and less sensitive to positive jumps than for defensive sectors.
4

Estimação da volatilidade : uma aplicação utilizando dados intradiários

Milach, Felipe Tavares January 2010 (has links)
O estudo da volatilidade dos retornos dos ativos ocupa um lugar de destaque dentro da moderna teoria de finanças. Tradicionalmente, os modelos empregados para a modelagem da volatilidade são estimados a partir de dados diários. No entanto, a recente disponibilidade de dados intradiários tem permitido a modelagem e a previsão da volatilidade dos ativos por meio da chamada variância realizada. Dessa forma, o objetivo principal da presente dissertação foi analisar como os modelos que incorporam dados intradiários se comportam, em termos de acurácia de previsão de volatilidade diária, em relação àqueles que utilizam apenas dados diários. Foram observados os comportamentos dos índices Ibovespa e S&P 500 durante o período de janeiro de 2006 a junho de 2009. Os resultados revelaram que o desempenho de previsão dos modelos estimados a partir de dados diários foi superior ao dos modelos de variância realizada para os dois índices. Buscou-se ainda comparar o comportamento dos modelos durante o período da crise de 2008. Novamente os resultados apontaram para uma melhor acurácia de previsão dos modelos que utilizaram apenas dados diários. / The study of volatility in asset returns is relevant within the modern theory of finance. Modeling volatility has been frequently based on daily data. Recent availability of intraday data has allowed volatility modeling and forecasting through the so called realized variance. The main objective of this master’s thesis was, therefore, to compare the accuracy of daily volatility forecasting between models that use either daily or intraday data. Returns during the period January 2006 to June 2009 on two indexes, the Ibovespa and the S&P 500, were used. Results showed that, for both indexes, forecasting based on daily data was superior to forecasting that used intraday returns. Comparison between models was also tested during the 2008 crisis. Similarly, results showed a better forecasting performance of daily data models.
5

Financial Market Volatility and Jumps

Huang, Xin 07 May 2007 (has links)
This dissertation consists of three related chapters that study financial market volatility, jumps and the economic factors behind them. Each of the chapters analyzes a different aspect of this problem. The first chapter examines tests for jumps based on recent asymptotic results. Monte Carlo evidence suggests that the daily ratio z-statistic has appropriate size, good power, and good jump detection capabilities revealed by the confusion matrix comprised of jump classification probabilities. Theoretical and Monte Carlo analysis indicate that microstructure noise biases the tests against detecting jumps, and that a simple lagging strategy corrects the bias. Empirical work documents evidence for jumps that account for seven percent of stock market price variance. Building on realized variance and bi-power variation measures constructed from high-frequency financial prices, the second chapter proposes a simple reduced form framework for modelling and forecasting daily return volatility. The chapter first decomposes the total daily return variance into three components, and proposes different models for the different variance components: an approximate long-memory HAR-GARCH model for the daytime continuous variance, an ACH model for the jump occurrence hazard rate, a log-linear structure for the conditional jump size, and an augmented GARCH model for the overnight variance. Then the chapter combines the different models to generate an overall forecasting framework, which improves the volatility forecasts for the daily, weekly and monthly horizons. The third chapter studies the economic factors that generate financial market volatility and jumps. It extends the recent literature by separating market responses into continuous variance and discontinuous jumps, and differentiating the market’s disagreement and uncertainty. The chapter finds that there are more large jumps on news days than on no-news days, with the fixed-income market being more responsive than the equity market, and non-farm payroll employment being the most influential news. Surprises in forecasts impact volatility and jumps in the fixed-income market more than the equity market, while disagreement and uncertainty influence both markets with different effects on volatility and jumps. JEL classification: C1, C2, C5, C51, C52, F3, F4, G1, G14 / Dissertation
6

Estimação da volatilidade : uma aplicação utilizando dados intradiários

Milach, Felipe Tavares January 2010 (has links)
O estudo da volatilidade dos retornos dos ativos ocupa um lugar de destaque dentro da moderna teoria de finanças. Tradicionalmente, os modelos empregados para a modelagem da volatilidade são estimados a partir de dados diários. No entanto, a recente disponibilidade de dados intradiários tem permitido a modelagem e a previsão da volatilidade dos ativos por meio da chamada variância realizada. Dessa forma, o objetivo principal da presente dissertação foi analisar como os modelos que incorporam dados intradiários se comportam, em termos de acurácia de previsão de volatilidade diária, em relação àqueles que utilizam apenas dados diários. Foram observados os comportamentos dos índices Ibovespa e S&P 500 durante o período de janeiro de 2006 a junho de 2009. Os resultados revelaram que o desempenho de previsão dos modelos estimados a partir de dados diários foi superior ao dos modelos de variância realizada para os dois índices. Buscou-se ainda comparar o comportamento dos modelos durante o período da crise de 2008. Novamente os resultados apontaram para uma melhor acurácia de previsão dos modelos que utilizaram apenas dados diários. / The study of volatility in asset returns is relevant within the modern theory of finance. Modeling volatility has been frequently based on daily data. Recent availability of intraday data has allowed volatility modeling and forecasting through the so called realized variance. The main objective of this master’s thesis was, therefore, to compare the accuracy of daily volatility forecasting between models that use either daily or intraday data. Returns during the period January 2006 to June 2009 on two indexes, the Ibovespa and the S&P 500, were used. Results showed that, for both indexes, forecasting based on daily data was superior to forecasting that used intraday returns. Comparison between models was also tested during the 2008 crisis. Similarly, results showed a better forecasting performance of daily data models.
7

Estimação da volatilidade : uma aplicação utilizando dados intradiários

Milach, Felipe Tavares January 2010 (has links)
O estudo da volatilidade dos retornos dos ativos ocupa um lugar de destaque dentro da moderna teoria de finanças. Tradicionalmente, os modelos empregados para a modelagem da volatilidade são estimados a partir de dados diários. No entanto, a recente disponibilidade de dados intradiários tem permitido a modelagem e a previsão da volatilidade dos ativos por meio da chamada variância realizada. Dessa forma, o objetivo principal da presente dissertação foi analisar como os modelos que incorporam dados intradiários se comportam, em termos de acurácia de previsão de volatilidade diária, em relação àqueles que utilizam apenas dados diários. Foram observados os comportamentos dos índices Ibovespa e S&P 500 durante o período de janeiro de 2006 a junho de 2009. Os resultados revelaram que o desempenho de previsão dos modelos estimados a partir de dados diários foi superior ao dos modelos de variância realizada para os dois índices. Buscou-se ainda comparar o comportamento dos modelos durante o período da crise de 2008. Novamente os resultados apontaram para uma melhor acurácia de previsão dos modelos que utilizaram apenas dados diários. / The study of volatility in asset returns is relevant within the modern theory of finance. Modeling volatility has been frequently based on daily data. Recent availability of intraday data has allowed volatility modeling and forecasting through the so called realized variance. The main objective of this master’s thesis was, therefore, to compare the accuracy of daily volatility forecasting between models that use either daily or intraday data. Returns during the period January 2006 to June 2009 on two indexes, the Ibovespa and the S&P 500, were used. Results showed that, for both indexes, forecasting based on daily data was superior to forecasting that used intraday returns. Comparison between models was also tested during the 2008 crisis. Similarly, results showed a better forecasting performance of daily data models.
8

Dados de alta frequência : averiguando o impacto de microestrutura de mercado e sazonalidade intradiária na detecção de saltos e estimação da variação quadrática

Marmitt, Juliano January 2012 (has links)
Neste trabalho, visamos mostrar as características usuais dos dados de alta frequência, bem como utilizar modelagem não paramétrica para estimar a variância/volatilidade para esses dados. Após uma revisão sobre microestrutura de mercado, sazonalidade intradiária, variação quadrática e saltos, utilizamos os dados da PETR4 para estimar a variância realizada e variação bipotente. Determinadas essas séries, testamos se há saltos nas mesmas. Em seguida, analisamos o impacto que a microestrutura de mercado e a sazonalidade intradiária causam na detecção dos saltos. Concluímos que, enquanto a presença de microestrutura aponta para um número de saltos menor que o esperado, a sazonalidade intradiária aponta para o lado contrário, ou seja, ela causa um viés para detectar mais saltos, dada a estrutura típica da curva de volatilidade ao longo do dia em formato de J invertido, causando mais saltos incorretamente detectados no período mais volátil do dia (que corresponde a abertura da bolsa de valores). / In this work, we aim to show the usual characteristics of high-frequency data and the estimation of variance/volatility for this kind of data using nonparametric models. After reviewing concepts about market microstructure, intraday seasonality, quadratic variation and jumps, we use PETR4 data to estimate realized variance and bipower variation. With these series determined, we test for jumps. Then, we analyze the impact that market microstructure and intraday seasonality causes in jump detection. We conclude that while microstructure noise indicates fewer jumps than the ideal amount, intraday seasonality goes in the opposite direction, i.e., it detects more jumps than it should, since the typical inverted-J-shaped intraday volatility pattern tends to incorrectly detect more jumps at the most volatile period (which is when stock markets start negotiations).
9

Dados de alta frequência : averiguando o impacto de microestrutura de mercado e sazonalidade intradiária na detecção de saltos e estimação da variação quadrática

Marmitt, Juliano January 2012 (has links)
Neste trabalho, visamos mostrar as características usuais dos dados de alta frequência, bem como utilizar modelagem não paramétrica para estimar a variância/volatilidade para esses dados. Após uma revisão sobre microestrutura de mercado, sazonalidade intradiária, variação quadrática e saltos, utilizamos os dados da PETR4 para estimar a variância realizada e variação bipotente. Determinadas essas séries, testamos se há saltos nas mesmas. Em seguida, analisamos o impacto que a microestrutura de mercado e a sazonalidade intradiária causam na detecção dos saltos. Concluímos que, enquanto a presença de microestrutura aponta para um número de saltos menor que o esperado, a sazonalidade intradiária aponta para o lado contrário, ou seja, ela causa um viés para detectar mais saltos, dada a estrutura típica da curva de volatilidade ao longo do dia em formato de J invertido, causando mais saltos incorretamente detectados no período mais volátil do dia (que corresponde a abertura da bolsa de valores). / In this work, we aim to show the usual characteristics of high-frequency data and the estimation of variance/volatility for this kind of data using nonparametric models. After reviewing concepts about market microstructure, intraday seasonality, quadratic variation and jumps, we use PETR4 data to estimate realized variance and bipower variation. With these series determined, we test for jumps. Then, we analyze the impact that market microstructure and intraday seasonality causes in jump detection. We conclude that while microstructure noise indicates fewer jumps than the ideal amount, intraday seasonality goes in the opposite direction, i.e., it detects more jumps than it should, since the typical inverted-J-shaped intraday volatility pattern tends to incorrectly detect more jumps at the most volatile period (which is when stock markets start negotiations).
10

Dados de alta frequência : averiguando o impacto de microestrutura de mercado e sazonalidade intradiária na detecção de saltos e estimação da variação quadrática

Marmitt, Juliano January 2012 (has links)
Neste trabalho, visamos mostrar as características usuais dos dados de alta frequência, bem como utilizar modelagem não paramétrica para estimar a variância/volatilidade para esses dados. Após uma revisão sobre microestrutura de mercado, sazonalidade intradiária, variação quadrática e saltos, utilizamos os dados da PETR4 para estimar a variância realizada e variação bipotente. Determinadas essas séries, testamos se há saltos nas mesmas. Em seguida, analisamos o impacto que a microestrutura de mercado e a sazonalidade intradiária causam na detecção dos saltos. Concluímos que, enquanto a presença de microestrutura aponta para um número de saltos menor que o esperado, a sazonalidade intradiária aponta para o lado contrário, ou seja, ela causa um viés para detectar mais saltos, dada a estrutura típica da curva de volatilidade ao longo do dia em formato de J invertido, causando mais saltos incorretamente detectados no período mais volátil do dia (que corresponde a abertura da bolsa de valores). / In this work, we aim to show the usual characteristics of high-frequency data and the estimation of variance/volatility for this kind of data using nonparametric models. After reviewing concepts about market microstructure, intraday seasonality, quadratic variation and jumps, we use PETR4 data to estimate realized variance and bipower variation. With these series determined, we test for jumps. Then, we analyze the impact that market microstructure and intraday seasonality causes in jump detection. We conclude that while microstructure noise indicates fewer jumps than the ideal amount, intraday seasonality goes in the opposite direction, i.e., it detects more jumps than it should, since the typical inverted-J-shaped intraday volatility pattern tends to incorrectly detect more jumps at the most volatile period (which is when stock markets start negotiations).

Page generated in 0.0597 seconds