• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compact Symmetric Spaces, Triangular Factorization, and Cayley Coordinates

Habermas, Derek January 2006 (has links)
Let X be a simply connected, compact Riemannian symmetric space. We can represent X as the homogeneous space U/K, where U is a simply connected compact Lie group, and K is the fixed point set of an involution θ of U. Let G be the complexification of U. We consider the intersections of the image of the Cartan embedding Φ : U/K → U ⊂ G : uK → uu⁻ᶿ with the strata of the Birkhoff (or triangular, or LDU) decomposition G = ⫫(w∈W) ∑(G/w), ∑(G/w) = N⁻wHN⁺ relative to a θ-stable decomposition of the Lie algebra, g = n⁻ ⊕h ⊕ n⁺. For a generic element g in this intersection, g ∈ Φ(U/K) ∩ ∑(G/1), this yields a unique triangular factorization g = ldu. Our main contribution is to produce explicit formulas for the diagonal term d in classical cases, using Cayley coordinates (this choice of coordinate is motivated by considerations beyond sheer convenience). These formulas have several applications: 1) we can compute π₀(Φ(U/K) \ ∩ ∑(G/1) ) explicitly; 2) we can compute ʃ(Φ(U/K))ᵃΦ^-iλ (where ᵃΦ is the positive part of d) using elementary techniques in rank 1 cases; 3) they are useful in explicitly calculating Evens-Lu Poisson structures on U=K (see [Caine(2006)]). Our set-up involves choosing specific representations of the various u in su(n;C) that are compatible with θ; that is, θ fixes each of the subspaces n⁻; h; and n⁺ which, in our setup, always consist of strictly lower triangular, diagonal, and strictly upper triangular matrices, respectively. The formulas contain determinants such as det(1 + X), where X is in ip, the -1-eigenspace of θ acting on the Lie algebra u. Due to the relatively sparse nature of these matrices, these determinants are often easily calculable, and we illustrate this with many examples.
2

Διακριτοποίηση ολοκληρώσιμων μερικών διαφορικών εξισώσεων : η περίπτωση της εξίσωσης των Korteweg και de Vries

Σκλαβενίτη, Σπυριδούλα 26 May 2015 (has links)
Στην παρούσα εργασία παρουσιάζεται μία μέθοδος πλήρους διακριτοποίησης (χωρικής και χρονικής) για την εξίσωση των Korteweg και de Vries. H μέθοδος αυτή μελετήθηκε από τον J. Schiff στην εργασία Loop groups and discrete KdV equations και στηρίζεται στην διάσπαση Birkhoff σε κατάλληλη ομάδα βρόχων για την εύρεση του ζεύγους Lax. Για τις προκύπτουσες εξισώσεις μερικών διαφορών κατασκευάζονται μετασχηματισμοί Backlund μέσω της ίδιας μεθόδου, οι οποίοι, στην συνέχεια, χρησιμοποιούνται για την εύρεση σολιτονικών λύσεων. Ειδικότερα, μία από τις διακριτοποιήσεις έχει άμεσο ("φυσικό") συνεχές όριο την εξίσωση potential KdV. Σε κάθε περίπτωση διακριτοποίησης, κατασκευάζονται σολιτονικές λύσεις, οι οποίες συγκρίνονται με αυτές της συνεχούς περίπτωσης και εξετάζονται ως προς την σολιτονική αλληλεπίδραση. / In this thesis, we present a method of full discretization (both spatial and temporal coordinates are discretized) for the Korteweg and de Vries' equation. This method was studied by J. Schiff in his paper Loop groups and discrete KdV equations. The procedure is based on Birkhoff decomposition in an appropriate loop group in order to derive a Lax representation. For the resulting partial difference equations, we construct Backlund transformations via the same method, which are used to generate soliton solutions. In particular, one discretization has the potential KdV equation as a standard (natural) continuum limit. In both cases, soliton solutions are produced and compared with those of the continuous case. Finally, we study their soliton interaction.
3

Renormalisation dans les algèbres de HOPF graduées connexes / Renormalization in connected graded Hopf algebras

Belhaj Mohamed, Mohamed 29 November 2014 (has links)
Dans cette thèse, nous nous intéressons à la renormalisation de Connes et Kreimer dans le contexe des algèbres de Hopf de graphes de Feynman spécifiés. Nous construisons une structure d'algèbre de Hopf $\mathcal{H}_\mathcal{T}$ sur l'espace des graphes de Feynman spécifié d'une théorie quantique des champs $\mathcal{T}$. Nous définissons encore un dédoublement $\wt\mathcal{D}_\mathcal{T}$ de la bigèbre de graphes de Feynman spécifiés, un produit de convolution \divideontimes et un groupe de caractères de cette algèbre de Hopf à valeurs dans une algèbre commutative qui prend en compte la dépendance en les moments extérieurs. Nous mettons en place alors la renormalisation décrite par A. Connes et D. Kreimer et la décomposition de Birkhoff pour deux schémas de renormalisation : le schéma minimal de renormalisation et le schéma de développement de Taylor. Nous rappelons la définition des intégrales de Feynman associées à un graphe. Nous montrons que ces intégrales sont holomorphes en une variable complexe D dans le cas des fonctions de Schwartz, et qu'elles s'étendent en une fonction méromorphe dans le cas des fonctions de types Feynman. Nous pouvons alors déterminer les parties finies de ces intégrales en utilisant l'algorithme BPHZ après avoir appliqué la procédure de régularisation dimensionnelle. / In this thesis, we study the renormalization of Connes-Kreimer in the contex of specified Feynman graphs Hopf algebra. We construct a Hopf algebra structure $\mathcal{H}_\mathcal{T}$ on the space of specified Feynman graphs of a quantum field theory $\mathcal{T}$. We define also a doubling procedure for the bialgebra of specified Feynman graphs, a convolution product and a group of characters of this Hopf algebra with values in some suitable commutative algebra taking momenta into account. We then implement the renormalization described by A. Connes and D. Kreimer and the Birkhoff decomposition for two renormalization schemes: the minimal subtraction scheme and the Taylor expansion scheme.We recall the definition of Feynman integrals associated with a graph. We prove that these integrals are holomorphic in a complex variable D in the case oh Schwartz functions, and that they extend in a meromorphic functions in the case of a Feynman type functions. Finally, we determine the finite parts of Feynman integrals using the BPHZ algorithm after dimensional regularization procedure.

Page generated in 0.1074 seconds