Spelling suggestions: "subject:"blackscholes delmodell"" "subject:"blackscholes cellmodell""
11 |
Dynamic optimal portfolios benchmarking the stock marketGabih, Abdelali, Richter, Matthias, Wunderlich, Ralf 06 October 2005 (has links) (PDF)
The paper investigates dynamic optimal portfolio strategies of utility maximizing portfolio managers in the presence of risk constraints. Especially we consider
the risk, that the terminal wealth of the portfolio falls short of a certain benchmark level which is proportional to the stock price. This risk is measured by the
Expected Utility Loss. We generalize the findings our previous papers to this case.
Using the Black-Scholes model of a complete financial market and applying martingale methods, analytic expressions for the optimal terminal wealth and the optimal
portfolio strategies are given. Numerical examples illustrate the analytic results.
|
12 |
A taxonomy of risk-neutral distribution methods : theory and implementation /Gruber, Alfred. January 2003 (has links)
Thesis (doctoral)--Universität St. Gallen, 2003.
|
13 |
Three essays on asset pricing and risk management /Huang, Zhijiang. January 2007 (has links) (PDF)
Univ., Diss.--Genève, 2007.
|
14 |
A taxonomy of risk-neutral distribution methods : theory and implementation /Gruber, Alfred. January 2003 (has links) (PDF)
Univ., Diss.--St. Gallen, 2002.
|
15 |
A taxonomy of risk-neutral distribution methods : theory and implementation /Gruber, Alfred. January 2003 (has links) (PDF)
St. Gallen, Univ., Diss., 2002.
|
16 |
KMU-Finanzierung mit Mezzanine-Kapital Produktgestaltung und Prozesse /Stettler, Matthias. January 2006 (has links) (PDF)
Bachelor-Arbeit Univ. St. Gallen, 2006.
|
17 |
Value to Executives von Options- und AktienbeteiligungsplänenLandolt, Beatrice. January 2006 (has links) (PDF)
Master-Arbeit Univ. St. Gallen, 2006.
|
18 |
Symmetriereduktionen und explizite Lösungen für ein nichtlineares Modell eines Preisbildungsprozesses in illiquiden MärktenChmakova, Alina Y. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2005--Cottbus.
|
19 |
Illustration of stochastic processes and the finite difference method in financeKluge, Tino 22 January 2003 (has links) (PDF)
The presentation shows sample paths of stochastic processes in form of animations. Those stochastic procsses are usually used to model financial quantities like exchange rates, interest rates and stock prices.
In the second part the solution of the Black-Scholes PDE using the finite difference method is illustrated. / Der Vortrag zeigt Animationen von Realisierungen stochstischer Prozesse, die zur Modellierung von Groessen im Finanzbereich haeufig verwendet werden
(z.B. Wechselkurse, Zinskurse, Aktienkurse).
Im zweiten Teil wird die Loesung der Black-Scholes
Partiellen Differentialgleichung mittels Finitem Differenzenverfahren graphisch veranschaulicht.
|
20 |
A Generalized Bivariate Ornstein-Uhlenbeck Model for Financial AssetsKrämer, Romy, Richter, Matthias 19 May 2008 (has links) (PDF)
In this paper, we study mathematical properties of a generalized bivariate
Ornstein-Uhlenbeck model for financial assets. Originally introduced by Lo and
Wang, this model possesses a stochastic drift term which influences the statistical
properties of the asset in the real (observable) world. Furthermore, we generali-
ze the model with respect to a time-dependent (but still non-random) volatility
function.
Although it is well-known, that drift terms - under weak regularity conditions -
do not affect the behaviour of the asset in the risk-neutral world and consequently
the Black-Scholes option pricing formula holds true, it makes sense to point out
that these regularity conditions are fulfilled in the present model and that option
pricing can be treated in analogy to the Black-Scholes case.
|
Page generated in 0.1132 seconds