• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 54
  • 31
  • 13
  • 8
  • 7
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 191
  • 191
  • 102
  • 46
  • 45
  • 41
  • 30
  • 29
  • 29
  • 28
  • 27
  • 27
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Mineral Reactions and Slag Formation During Reduction of Olivine Blast Furnace Pellets

Ryösä, Elin January 2008 (has links)
The present work focuses on mineral reactions and slag formation of LKAB olivine iron ore pellets (MPBO) subjected to reducing conditions in the LKAB experimental blast furnace (EBF). The emphasis is on olivine reactions with surrounding iron oxides. Many factors influence the olivine behaviour. The study was performed by use of micro methods; optical microscopy, micro probe analysis, micro Raman and Mössbuer spectroscopy and thremodynamic modeling. During manufacturing, in oxidising atmosphere at high temperature (1350°C), olivine alterations occur through slag formation and rim reactions with iron oxides and other additives. To be able to describe olivine behaviour in the rather complex blast furnace reduction process one has to consider factors such as reactions kinetics, reduction degree of iron oxides, vertical and horizontal position in the furnace and reactions with alkali. Samples were collected from the EBF both from in shaft probing during operation and from excavation following quenching of the EBF. The initial slag forming olivine consist of primary forsterite – (Mg1.9Fe0.1)SiO4 – with inclusions of hematite and an amorphous silica rich phase, a first corona with lamellae of magnesioferrite, olivine and orthopyroxene, a second corona of amorphous silica and magnesioferrite. During reduction in the upper shaft in the EBF (700-900°C) Fe3+ reduces to Fe2+. The amorphous silica in the second corona absorbs alkali, Al, Fe2+, Mg, and Ca and form glasses of varying compositions. The lamellae in the first corona will merge into a single phase olivine rim. With further reduction the glasses in the second corona will merge with the olivine rim forming an iron rich olivine rim and leaving the elements that do not fit into the olivine crystal lattice as small silicate glass inclusions. Diffusion of magnesium and iron between olivines and iron oxides increase with increasing temperature in the lower shaft of the EBF (750-1100°C). In the cohesive zone of the EBF (1100-1200°C) Fe2+ is not stable any longer and Fe2+ will be expelled from the olivine as metallic iron blebs, and the olivine will form a complex melt with a typical composition of alkali-Al2O3-MgO-SiO2. Alkali plays an important role in this final olivine consumption. The quench time for samples collected with probes and excavation are minutes respectively hours. A study of the quench rate’s effect on the phases showed no differences in the upper shaft. However, in the lower shaft wüstite separates into wüstite and magnetite when wüstite grows out of its stability field during slow cooling of excavated samples. There is also a higher alkali and aluminium deposition in the glass phases surrounding olivines in excavated pellets as a result of alkali and aluminium gas condensing on the burden in the EBF during cooling. Coating applied to olivine pellets was studied in the EBF with the aim to investigate its behaviour, particularly its ability to capture alkali. The coating materials were kaolinite, bauxite, olivine and limestone. No significant reactions were observed in the upper shaft. In the lower shaft a majority of the phases were amorphous and reflecting the original coating compositions. Deposition from the EBF gas phase occurs and kalsilite (KAlSiO4) is found in all samples; coating used for binding alkali is redundant from a quality perspective.
42

A Study of the Heat Flow in the Blast Furnace Hearth Lining

Swartling, Maria January 2010 (has links)
The aim of the present thesis was to study the heat flows in the blast furnace hearth lining by experimental measurements and numerical modeling. Thermocouple data from an operating furnace have been used throughout the work, to verify results and to develop methodologies to use the results in further studies. The hearth lining were divided into two zones based on the thermocouple readings: a region with regular temperature variations due to the tapping of the furnace, and another region with slow temperature variations. In an experimental study, the temperatures of the outer surfaces of the wall and bottom were measured and compared with lining temperature measured by thermocouples. Expressions to describe the outer surface temperature profiles were derived and used as input in a two-dimensional steady state heat transfer model. The aim of the study was to predict the lining temperature profiles in the region subjected to slow temperature variations. The methodology to calculate a steady state lining temperature profile was used as input to a three-dimensional model. The aim of the three-dimensional model was primarily to study the region with dynamic lining temperature variations caused by regular tappings. The study revealed that the replacement of original lining with tap clay has an effect when simulating the quasi-stationary temperature variations in the lining. The study initiated a more detailed study of the taphole region and the size and shape of the tap clay layer profile. It was concluded, that in order to make a more accurate heat transfer model of the blast furnace hearth, the presence of a skull build-up below the taphole, erosion above the taphole and the bath level variations must to be taken into consideration. / QC 20100706
43

An Investigation of the Hydration of Steam-cured Ternary and Quaternary Cement Blends

Clarridge, Elena 06 December 2011 (has links)
The influence of supplementary materials such as slag, metakaolin and limestone in steam-cured ternary and quaternary cement blends on physical and chemical hydration mechanisms was studied by analyzing the evolution of non-evaporable water content, hydration products and compressive strength. The role of limestone in hydration reactions of cement was also investigated. These properties were studied through the use of differential thermal and thermogravimetric analyses, as well as the loss-on-ignition, X-ray diffraction and compressive strength tests at 1, 3, 7, and 28 days. Research findings revealed that it is possible to replace up to 40% cement with other materials and still achieve compressive strengths similar to mixtures with a 25% cement replacement at 0.34 w/b ratio. Additionally, ternary limestone mixtures exhibited superior mechanical properties to ternary metakaolin mixtures. Lastly, limestone powder was determined to behave as inert filler, accelerating hydration at early ages through heterogeneous nucleation.
44

An Investigation of the Hydration of Steam-cured Ternary and Quaternary Cement Blends

Clarridge, Elena 06 December 2011 (has links)
The influence of supplementary materials such as slag, metakaolin and limestone in steam-cured ternary and quaternary cement blends on physical and chemical hydration mechanisms was studied by analyzing the evolution of non-evaporable water content, hydration products and compressive strength. The role of limestone in hydration reactions of cement was also investigated. These properties were studied through the use of differential thermal and thermogravimetric analyses, as well as the loss-on-ignition, X-ray diffraction and compressive strength tests at 1, 3, 7, and 28 days. Research findings revealed that it is possible to replace up to 40% cement with other materials and still achieve compressive strengths similar to mixtures with a 25% cement replacement at 0.34 w/b ratio. Additionally, ternary limestone mixtures exhibited superior mechanical properties to ternary metakaolin mixtures. Lastly, limestone powder was determined to behave as inert filler, accelerating hydration at early ages through heterogeneous nucleation.
45

Tungmetaller i lakvatten : avskiljning med mineraliska filtermaterial

Hjelm, Veronica January 2005 (has links)
Four different kinds of filter-materials with reactive surfaces have been studied concerning their capacity to absorb heavy metals in leachate from a municipal waste deposit. The heavy metals studied were: lead, cadmium, copper, mercury, chromium, nickel and zinc. The leachate contains high levels of dissolved organic carbon (DOC) and has a high pH-value along with a high buffer capacity. These characteristics of the leachate make it difficult to remove pollutants and require efficient filters. The filters that were examined in the report are blast-furnace slag with CaO, sand covered with iron oxides, olivine and nepheline. The experiment was carried out in two sets, starting with batch experiments followed by a column study. The objective of the batch experiments was to find out how variations in pH affected the sorption capacity of the materials. The interval used during the test was from pH 5 to pH 10. The computer program VisualMinteq was used to evaluate the dominating sorption processes when the materials interacted with the solutions. Two different kinds of solutions were used in the batch experiment. One of them was the leachate, to which known concentrations of heavy metals were added (about 1 μM) and the other consisted of sodium nitrate, a solution without organic compounds, which was used as a reference. The sodium nitrate solution was also spiked with the same concentration of heavy metals as the leachate. The results from the batch experiment showed that the sorption of heavy metals was lowered if the DOC level was high. No relation between pH and sorption ability could be found for the leachate, but for some metals in the sodium solution a higher pH improved the removal of heavy metals. The two materials that showed best results in the batch experiment were the blast-furnace slag and the sand with iron oxides. These materials were used in the column study. The olivine material was somewhat better than the nepheline in the batch experiment. Four columns were used in the column study, two for each material. Leachate with heavy metals was pumped into the columns with a specific flow rate; at first a low flow rate was used and when half the experiment time had passed the flow rate was increased. The flow rates used were 0.12 m/24 h and 0.62 m/24 h. The outcome of the column experiment showed that the slag had the highest ability to adsorb metals. The metal sorption was over 60 percent for lead, cadmium and zinc, where the highest sorption was obtained for lead. No affects were noticed when the flow rate was increased. / I detta examensarbete har fyra olika reaktiva filtermaterials kapaciteter att ur deponilakvatten avskilja tungmetallerna bly, kadmium, koppar, kvicksilver, krom, nickel och zink testats. Deponilakvatten är ett avloppsvatten med höga halter organiskt material (DOC), högt pH och en hög buffertkapacitet. Dess sammansättning ställer stora krav på ett filter och närvaron av ligander påverkar sorptionprocesserna. Filtren som ingått i studien är kalciumoxiddopad masugnsslagg, järnoxidtäckt sand, olivin och nefelin. Försöken utfördes i två delar, med inledande skakförsök och därefter kolonnförsök. I båda försöken användes lakvatten med en extra tillsats av tungmetaller. I skakförsöken användes även natriumnitrat; ett referensvatten utan organiska ligander, även det spikat med tungmetaller. I skakförsöken studerades avskiljningens pH-beroende för de olika filtren, med ett pH-intervall på ca 5 – 10. Därefter modellerades resultaten i jämviktsprogrammet VisualMinteq för att fastställa vilka processer som styr avskiljningen. Skakförsöken och kolonnförsöken utfördes båda i klimatrum vid 8 ºC, för att efterlikna markens naturliga temperatur. Resultaten från skakförsöken visade att masugnsslagg och järnoxidsand gav bäst avskiljning för de flesta tungmetaller. Olivin och nefelin var sämre metallsorbenter, där olivin uppvisade något bättre resultat än nefelin. Inget tydligt pH-beroende för lakvattnet kunde utläsas, men för natriumnitratlösningen gav en pH-höjning en ökad sorption för vissa metaller. Den kemiska jämviktsmodelleringen visade att den dominerande processen i filtermaterialen var sorption på filterytorna. De två filtermaterialen som visade bäst resultat i skakförsöken (slagg och järnoxid) studerades vidare i kolonnförsök, där ett bestämt lakvattenflöde pumpades genom kolonner packade med materialen. Två olika flödeshastigheter testades (0,12 m/dygn och 0,62 m/dygn) och sorptionen av metaller analyserades. Slaggen uppvisade högst avskiljningskapacitet av de studerade filtren. De metaller som sorberades bäst var bly, kadmium och zink (över 60 % avskiljning), där den högsta sorptionen erhölls för bly. Gemensamt för både skak- och kolonnförsöken var att sorptionen försvårades då halten organiskt material (DOC) ökade, vilket beror på att DOC konkurrerar med de reaktiva ytorna på filtren om att binda den fria metalljonen. Ingen minskande avskiljningseffekt av en flödesökning kunde utläsas.
46

Fosforavskiljning i reaktiva filter vid småskalig avloppsrening / Reactive Filter Materials for Removal of Phosphorus in Small Scale Wastewater Treatment Plants

Stark, Therese January 2004 (has links)
An excessive input of nutrients to lakes and other water bodies has created a problem with eutrophication in Sweden. Untreated, or partially treated, domestic sewage is a major source for discharge of phosphorus (P), which is the nutrient most frequently responsible for eutrophication of most fresh waters and the Baltic Sea. The waste water can be cleaned by filter materials, which have a high P-retention ability and which after saturation may be used as fertilizers. Four potentially suitable filter materials were tested in batch- and column experiments in this study. In the batch experiments, the following materials were shaken with waste water in time series ranging from 5 seconds to 60 minutes: coarse (1-4 mm) and fine (0-2 mm) Polonite® (heated bedrock from Poland); Filtralite® (light expanded clay aggregates with limestone added before burning); water cooled blast furnace slag (BF-slag) and BF-slag mixed with 10% burned limestone. In the column experiment, the phosphorus sorption capacity in BF-slag and BF-slag mixed with burned limestone was observed under saturated and unsaturated flow conditions for 10 weeks. The waste water used in both experiments originated from the full scale testing site at Ångersjön in Sweden. After the column experiment was ended, the filter materials were investigated with XRD (X-ray diffraction) and SEM (scanning electron microscope) in order to figure out which chemical reactions that had taken place. The results from the batch experiments show that fine Polonite® and BF-slag mixed with limestone have the fastest P sorption capacity. Already after 5 seconds of shaking the materials showed effective retention of P. The coarse Polonite®, Filtralite® and BF-slag showed similar sorption capacities, although the coarse Polonite® tended to be somewhat inferior. The column studies showed that the materials used in the columns had a sorption capacity of 98 % or more. The XRD and SEM indicated that an amorphous calcium-P-compound was created in the filter material. / I Sverige är reningen av fosfor i vatten från enskilda avlopp ofta bristfällig, vilket bland annat kan leda till övergödning av sjöar, hav och vattendrag. Sedan några år tillbaka har olika filtermaterial med speciella reaktiva egenskaper, som bland annat avskiljer fosfor från avloppsvatten, undersökts. Tanken med filtermaterialen är att de efter mättnad med näringsämnen ska kunnas användas som jordförbättringsmedel. I denna rapport har några olika filtermaterial, lämpade för fosforavskiljning, undersökts genom skak- och kolonnförsök. I skakförsök, där skaktiderna varierade mellan 5 sekunder och 60 minuter, testades Polonite®, Filtralite®, Hyttsand och Hyttsand blandad med 10 % bränd kalk. Polonite® är en upphettad form av bergarten opoka varav två olika kornstorleksfraktioner (0-2 mm och 1-4 mm) användes. Filtralite® och Hyttsand är antropogena filtermaterial. Filtralite® tillverkas i Norge och består av kalkhaltiga kulor av expanderad lera (Leca®). Hyttsand framställs genom vattenkylning av masugnsslagg som bildas vid framställningen av råjärn vid stålverket i Oxelösund. I kolonnförsöken, som utfördes under 10 veckor, studerades Hyttsand och Hyttsand blandad med 10 % bränd kalk under omättade och mättade flödesförhållanden. I samtliga experiment användes avloppsvatten från reningsverket vid Ångersjön, där Filtralite® och Hyttsand testas i fullskala. Efter kolonnförsöken avslutats undersöktes filtermaterialen med XRD (röntgendiffraktion) och SEM (svepelektron mikroskop) för att utreda vilka mekanismer som medverkat vid avskiljningen av fosfor. Resultaten från skakförsöken visade att finkornig Polonite® och Hyttsand blandad med kalk avskiljer fosfor effektivt redan efter skakning i 5 sekunder. Grovkornig Polonite, ren Hyttsand och Filtralite® sorberade fosfor tämligen likartat, även om den grovkorniga Poloniten® tenderade att vara aningen sämre än de övriga. Resultaten från kolonnförsöken visade att fosfor kunde avskiljas till över 98 % i alla kolonner och att det bildats amorfa fosfatföreningar, främst med kalcium, under den 2,5 månader långa experimentperioden.
47

Reactions in the Lower Part of the Blast Furnace with Focus on Silicon

Gustavsson, Joel January 2004 (has links)
<p>The thermodynamic conditions for the behaviour of silicon in the lower part of the blast furnace have been the focus of the thesis. More specifically, the influences of temperature, carbon activity, total gas pressure and Fe reoxidation on silicon have been studied.</p><p>Calculations show that an increased temperature gives higher equilibrium ratio between silicon in hot metal and slag. Furthermore, laboratory reduction studies shows that the carbon activity in the cohesive zone increase with an increased reduction time. Increased carbon activity will increase the equilibrium silicon content in liquid metal.</p><p>Equilibrium calculations based on tapped hot metal and slag shows that the equilibrium silicon content of the liquid metal phase is higher than measured at tapping. Around the raceway area the equilibrium silicon content is very high. The high equilibrium silicon content makes it important to differ between the conditions under operation and the conditions of samples taken out of the blast furnace before studied. The equilibrium silicon content is strongly correlated to the CO gas partial pressure. Often this partial pressure is changed during sampling and cooling of samples. At tapping the equilibrium partial pressure of CO has been calculated to higher values than the total gas pressure inside the blast furnace.</p><p>Metal droplets found in tapped slags are probably formed by reduction of FeO. In the periphery part of the lower part of the blast furnace, it is believed that mainly FeO oxidises silicon in hot metal. It is not expected that the metal droplets in the slag is formed if FeO oxidises dissolved silicon. Instead, the iron droplets may form at reactions with gas, coke carbon or coal powder carbon. Around some droplets increased magnesium content has been found. This may be due to reactions with gaseous magnesium that, according to thermodynamic conditions, is easy to form. It has been reported that much FeO may be formed in the raceway area. The metal droplets may indicate how much FeO that reacts with other components than liquid iron. The iron found in metal droplets in the slag corresponds to between 0.02 and 0.2 wt-% FeO in the slag.</p>
48

An Experimental and Numerical Study of the Heat Flow in the Blast Furnace Hearth

Swartling, Maria January 2008 (has links)
<p>This study has focused on determining the heat flows in a production blast furnace hearth. This part of the blast furnace is exposed to high temperatures. In order to increase the campaign length of the lining an improved knowledge of heat flows are necessary. Thus, it has been studied both experimentally and numerically by heat transfer modeling. Measurements of outer surface temperatures in the lower part of a production blast furnace were carried out. In the experimental study, relations were established between lining temperatures and outer surface temperatures. These relations were used as boundary conditions in a mathematical model, in which the temperature profiles in the hearth lining are calculated. The predictions show that the corner between the wall and the bottom is the most sensitive part of the hearth. Furthermore, the predictions show that no studied part of the lining had an inner temperature higher than the critical temperature 1150°C, where the iron melt can be in contact with the lining.</p>
49

Avaliação da combustibilidade de carvão brasileiro para injeção em altos-fornos em simulador de PCI E em termobalança

Barbieri, Cláudia Caroline Teixeira January 2018 (has links)
A injeção de carvão pulverizado na região das ventaneiras dos altos-fornos (Pulverized Coal Injection – PCI) é uma tecnologia amplamente praticada em altos-fornos com o objetivo de substituir parte do coque empregado por carvões não-coqueificáveis. O carvão injetado fornece energia e gases redutores para o processo de fabricação do gusa, além de contribuir para a redução da emissão de gases poluentes devido à menor produção de coque. Atualmente todo o carvão injetado em altos-fornos brasileiros é importado. O país possui grandes reservas de carvão, porém este carvão necessita passar por processos de beneficiamento para redução dos teores de matéria mineral e enxofre. A flexibilidade do processo PCI permite a utilização de ampla gama de carvões não-coqueificáveis, o que abre a possibilidade para utilização de carvão brasileiro. Este trabalho teve por objetivo avaliar propriedades de carvão brasileiro beneficiado com teor de cinzas de 18,9% para injeção em altos-fornos. O estudo foi conduzido através de ensaios de combustão empregando um moderno simulador de PCI projetado e desenvolvido pelo Laboratório de Siderurgia da Universidade Federal do Rio Grande do Sul (LaSid) e também uma termobalança de modo a ser possível traçar um comparativo entre ambos os equipamentos. Além do carvão brasileiro, de baixo rank, foram utilizados dois carvões importados já em uso para injeção, um de alto e um de baixo rank. A combustibilidade (ou eficiência de combustão) em simulador de PCI foi avaliada pela conversão (burnout), calculada pelo método ash tracer, um balanço de massa entre a quantidade de cinzas que entra e sai do reator. Em termobalança o parâmetro adotado foi a temperatura de pico, correspondente à taxa máxima de reação. Fez-se também a avaliação da reatividade ao CO2 dos chars gerados em simulador de PCI, visto que o char ao deixar a zona de combustão passa por uma zona rica neste gás. Análise estatística revelou que a técnica adotada de burnout mostrou-se bastante eficiente para diferenciar carvões de teores de matéria volátil distintos, porém não no caso de carvões com teores de matéria volátil similares. No simulador de PCI a influência da matéria volátil do carvão foi mais pronunciada do que o rank e em termobalança o rank teve mais efeito sobre a combustibilidade do que a matéria volátil. O carvão brasileiro apresentou propriedades comparáveis às do carvão importado de baixo rank utilizado para PCI. Isto representa uma grande vantagem, visto que possibilitaria a utilização do mesmo na siderurgia. / Pulverized coal injection through blast furnace tuyeres (PCI) is a widely practiced technology in blast furnaces to replace part of coke by non-coking coal. Injected coal provides energy and reducing gases for pig iron production process, as well as contributes to reducing pollutants gases emission due to coke saving. Currently all coal injected into Brazilian blast furnaces is imported. The country has large reserves of coal, but this coal needs to undergo beneficiation to reduce mineral matter and sulfur contents. PCI process flexibility allows the employment of a wide range of non-coking coals, which opens the possibility to use Brazilian coal. This work aimed to evaluate properties of Brazilian coal benefited with 18.9% ash content for injection into blast furnaces. The study was conducted through combustion tests employing a modern PCI test rig designed and developed by the Iron and Steelmaking Laboratory (LaSid) of the Federal University of Rio Grande do Sul (UFRGS) and also a thermobalance in order to draw a comparison between both equipments. In addition to low rank Brazilian coal, two imported coals which are already used for injection were used, one high and one low rank. The combustibility (or combustion efficiency) in a PCI test rig was evaluated by burnout, calculated by the ash tracer method, a mass balance between the amount of ash that enters and leaves the reactor. Peak temperature was the parameter adopted to evaluate combustibility in thermobalance, corresponding to the maximum rate of reaction. It was also evaluated the CO2 reactivity of chars generated in the PCI test rig, since char leaving the combustion zone passes through a CO2 rich area. Statistical analysis revealed that burnout technique proved to be efficient enough to differentiate coals with different volatile matter contents, but not in the case of coals with similar volatile matter contents. In PCI test rig the influence of volatile matter was more pronunced than rank and in thermobalance rank had more effect on combustibility than volatile matter. Brazilian coal showed properties comparable to the ones of imported low rank coal already in use for PCI. This is a great advantage, since it would make it possible to use it in ironmaking.
50

Alkali Circulation in the Blast Furnace - Process Correlations and Counter Measures

Carlsson, Joel January 2018 (has links)
In blast furnace ironmaking one major challenge is to control and measure the alkalis circulating and accumulating in the blast furnace (BF). Alkali enter the BF with the primary raw material and will form a cycle where it is first reduced to metal at the lower parts forming gas. Alkali then follows the gas flow up where it oxidizes and solidies as the oxide form has a higher melting and volatilization temperature. Condensation then occurs on burden material and in their pores and by that it is following the burden downwards. The circular nature of the reactions leads to a build-up of alkali in the form of potassium in the BF that is hard to control or measure. Condensation of alkali compounds can also occur on the BF walls functioning like a glue to which particles attach, forming scaffolds that can rapidly increase and disturb the burden descent. The increased alkali catalyzes gasication of coke with CO2 that increasescoke consumption and leads to disintegration of coke. A common method today to control alkali is by varying the basicity in the BF. As lower basicity increases the amount alkali removed through slag while at the same time reducing the amount of sulfur that can be removed with the slag. This project was divided into two parts. The first part was a continuation of a previous study performed at Swerea MEFOS. Where to control the effect of alkali on coke gasication a method was tested using coke ash modication to inhibit the catalyzing properties of alkali bound on coke. The method has previously shown that alkalis are bound in the desired form but the added amount was not sufficient for inhibition of all picked-up alkalis. In this study, additional trials with higher additions of kaolin was performed. 2 wt% kaolin was added to the coal blend for producing coke that was then added to LKAB's experimental blast furnace (EBF) as basket samples in the end of a campaign. The excavated samples were analyzed using XRF, XRD, SEM-EDS and TGA to find if the alkali was bound in aluminum silicates in the coke ash, if the addition was sufficient for binding all alkalis and if the catalytic effect in coke gasication had been achieved. The second part was a novel approach with a statistical process analysis using SIMCA to connect top gas composition of SSAB Oxelösund's BF No. 4 to alkali content using process data. The approach investigated the correlation between NH3(g) and HCN(g) in the top gas to alkali content. Expanding on the possibility to measure alkali content quickly for the operators using top gas measurements. Top gas composition was measured using a mass spectrometer (MS) and where complimented with process and tap data provided by SSAB. Data was analyzed using the multivariate analysis tool SIMCA 15 to find possible correlations. Results from the first part showed that the alkali that was found was present as alkali aluminum silicates independent of kaolin addition after the EBF. As temperature along gas composition was the main factors behind alkali uptake in coke. Main differences in alkali uptake and development of coke properties in the BF was linked to the temperature and gas composition profile during tests campaigns compared. Results from TGA showed that the reaction rate of coke with CO2 increases with increasing K2O and that start of reaction was lower with increasing alkali. The results from the second approach did not find a correlation between HCN(g) and K2O in slag. Positive correlation could be seen between HCN(g) and increased SiO2 in slag and that H2O(g) would affect HCN(g) negatively.

Page generated in 0.0524 seconds