Spelling suggestions: "subject:"blastemzellen"" "subject:"tandemzellen""
1 |
Patterning of stem cells during limb regeneration in Ambystoma mexicanumRönsch, Kathleen 22 January 2018 (has links) (PDF)
Axolotl uniquely generates blastema cells as a pool of progenitor/stem cells to restore an entire limb, a particular property that other organisms, such as humans, do not have. What underlies these differences? Is the main difference that cells residing at the amputation plane (in the stump) undergo reprogramming processes to re-enter the embryonic program, which allows developmental patterning to start, or are there fundamental differences? There is also a significant debate about whether regeneration occurs via stem cell differentiation or by dedifferentiation of mature limb tissue. The aim of my thesis was to address following questions: Are the cells in the blastema reprogrammed or differentiated to regenerate? Are the blastema cells genetically reactivated de novo during regeneration? How does the amputated limb exactly know which part of the limb needs to be regenerate?
Using a novel technique of long-term genetic fate mapping, my team demonstrated that dedifferentiation in regenerated axolotl muscle tissue does not occur. Instead, PAX7+ satellite cells indeed play an important role during muscle regeneration in the axolotl limb. Surprisingly, this is in contrast to the newt, which regenerates muscle cells through a dedifferentiation process. Therefore, there is a fundamental difference that underlies the regenerative mechanism ((Sandoval-Guzman et al., 2014) [KR1]). This demonstrates that there is an unexpected diversity and flexibility of cellular mechanims used during limb regeneration, even among two closely related species. Finally, if one salamander species uses a mammalian regenerative strategy (Cornelison and Wold, 1997; Collins et al., 2005) involving stem cells and another uses a dedifferentiative strategy, this raises the question of whether there are other fundamental aspects of regeneration that could also be anomalous. This hypothesis is promising since there could be more than one possible mechanism to induce mammalian regeneration.
The process of limb regeneration in principle seems to be more similar to those of limb development as historically assumed. We showed molecularly that embryonic players are reused during regeneration by reactivating the position- and tissue-specific developmental gene programs by using the newly isolated Twist sequences as early blastema cell markers ((Kragl et al., 2013) [KR2]). To gain insights into the molecular mechanisms of the P/D limb patterning in general, it was crucial to study the early patterning events of the resident progenitor/stem cells by using the specific blastema cell marker HoxA as a positional marker along the proximo-distal axis. Our HOXA protein analysis using high molecular and cellular resolution as well as transplantation assays demonstrated for the first time that axolotl limb blastema cells acquire their positional identity in a proximal to distal sequence. We found a hierarchy of cellular restrictions in positional identities. Amputation at the level of the upper arm showed that the blastema harbors cells, which convert to lower arm and hand. We observed ((Roensch et al., 2013) [KR3]) for the first time that intercalation- the intermediate element (lower arm) arises later from an interaction between the proximal and distal cells identities- does not occur. Intercalation, which has been an accepted model for a long time, is not the patterning mechanism underlying normal (without any manipulation) limb regeneration that is unique to axolotl. We further demonstrated, using the Hox genes as markers that positional identity is cell-type specific since their effects were confirmed to be present in the lateral plate mesoderm- derived cells of the limb.
As our knowledge about limb blastemas expands concerning cell composition and molecular events controlling patterning, the similarity to development is becoming more and more clear. My work has resolved many ambiguities surrounding the molecularly identification of different types of blastema cells and how P/D limb patterning occurs during regeneration in comparison to development. It has highlighted the importance of combining high-resolution methods, such as in situ hybridizations, single-cell PCR (sc-PCR) of individual dissociated blastema cells and genetic labeling methods with grafting experiments to map cell fates in vivo.
In addition to understanding the processes of regeneration, another long-term goal in the regenerative medicine field is to identify key molecules that trigger the regeneration of tissues. Recently, my colleague Takuji Sugiura (Sugiura et al., 2016) observed that an early event of blastema formation is the secretion of molecules like MLP (MARCKS-like protein), which induces wound-associated cell cycle re-entry. Such findings further increase the enthusiasm of biologists to understand the underlying principles of regeneration. By building our knowledge of the molecules and pathways that are involved in tissue regeneration, we increase the possibility of identifying a way to ‘activate’ regenerative processes in humans and thus reach the final goal of regenerative medicine, which is to use the concepts of cellular reprogramming, stem cell biology and tissue engineering to repair complex body structures.
|
2 |
Patterning of stem cells during limb regeneration in Ambystoma mexicanumRönsch, Kathleen 30 November 2017 (has links)
Axolotl uniquely generates blastema cells as a pool of progenitor/stem cells to restore an entire limb, a particular property that other organisms, such as humans, do not have. What underlies these differences? Is the main difference that cells residing at the amputation plane (in the stump) undergo reprogramming processes to re-enter the embryonic program, which allows developmental patterning to start, or are there fundamental differences? There is also a significant debate about whether regeneration occurs via stem cell differentiation or by dedifferentiation of mature limb tissue. The aim of my thesis was to address following questions: Are the cells in the blastema reprogrammed or differentiated to regenerate? Are the blastema cells genetically reactivated de novo during regeneration? How does the amputated limb exactly know which part of the limb needs to be regenerate?
Using a novel technique of long-term genetic fate mapping, my team demonstrated that dedifferentiation in regenerated axolotl muscle tissue does not occur. Instead, PAX7+ satellite cells indeed play an important role during muscle regeneration in the axolotl limb. Surprisingly, this is in contrast to the newt, which regenerates muscle cells through a dedifferentiation process. Therefore, there is a fundamental difference that underlies the regenerative mechanism ((Sandoval-Guzman et al., 2014) [KR1]). This demonstrates that there is an unexpected diversity and flexibility of cellular mechanims used during limb regeneration, even among two closely related species. Finally, if one salamander species uses a mammalian regenerative strategy (Cornelison and Wold, 1997; Collins et al., 2005) involving stem cells and another uses a dedifferentiative strategy, this raises the question of whether there are other fundamental aspects of regeneration that could also be anomalous. This hypothesis is promising since there could be more than one possible mechanism to induce mammalian regeneration.
The process of limb regeneration in principle seems to be more similar to those of limb development as historically assumed. We showed molecularly that embryonic players are reused during regeneration by reactivating the position- and tissue-specific developmental gene programs by using the newly isolated Twist sequences as early blastema cell markers ((Kragl et al., 2013) [KR2]). To gain insights into the molecular mechanisms of the P/D limb patterning in general, it was crucial to study the early patterning events of the resident progenitor/stem cells by using the specific blastema cell marker HoxA as a positional marker along the proximo-distal axis. Our HOXA protein analysis using high molecular and cellular resolution as well as transplantation assays demonstrated for the first time that axolotl limb blastema cells acquire their positional identity in a proximal to distal sequence. We found a hierarchy of cellular restrictions in positional identities. Amputation at the level of the upper arm showed that the blastema harbors cells, which convert to lower arm and hand. We observed ((Roensch et al., 2013) [KR3]) for the first time that intercalation- the intermediate element (lower arm) arises later from an interaction between the proximal and distal cells identities- does not occur. Intercalation, which has been an accepted model for a long time, is not the patterning mechanism underlying normal (without any manipulation) limb regeneration that is unique to axolotl. We further demonstrated, using the Hox genes as markers that positional identity is cell-type specific since their effects were confirmed to be present in the lateral plate mesoderm- derived cells of the limb.
As our knowledge about limb blastemas expands concerning cell composition and molecular events controlling patterning, the similarity to development is becoming more and more clear. My work has resolved many ambiguities surrounding the molecularly identification of different types of blastema cells and how P/D limb patterning occurs during regeneration in comparison to development. It has highlighted the importance of combining high-resolution methods, such as in situ hybridizations, single-cell PCR (sc-PCR) of individual dissociated blastema cells and genetic labeling methods with grafting experiments to map cell fates in vivo.
In addition to understanding the processes of regeneration, another long-term goal in the regenerative medicine field is to identify key molecules that trigger the regeneration of tissues. Recently, my colleague Takuji Sugiura (Sugiura et al., 2016) observed that an early event of blastema formation is the secretion of molecules like MLP (MARCKS-like protein), which induces wound-associated cell cycle re-entry. Such findings further increase the enthusiasm of biologists to understand the underlying principles of regeneration. By building our knowledge of the molecules and pathways that are involved in tissue regeneration, we increase the possibility of identifying a way to ‘activate’ regenerative processes in humans and thus reach the final goal of regenerative medicine, which is to use the concepts of cellular reprogramming, stem cell biology and tissue engineering to repair complex body structures.
|
Page generated in 0.0518 seconds