• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 9
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O impacto do diabetes Mellitus do tipo 1 sobre a ação da resposta proliferativa estimulada pela progesterona no ambiente uterino de camundongos. / The impact of type 1 Diabetes Mellitus on the progesterone-mediated cell proliferative response on mice uterine environment.

Santos, Rafael Dalbosco dos 03 December 2015 (has links)
A proliferação celular mediada pela progesterona (P4) é essencial para a funcão uterina. Dessa forma, alterações nesse processo podem comprometer a reprodução. O diabetes do tipo 1 (DM1) está associado a diversos distúrbios reprodutivos. No entanto, o impacto do DM1 sobre a ação da P4 no ambiente uterino ainda não é conhecido. Para isso, utilizamos fêmeas de camundongo DM1 induzidas por aloxana, submetidas à ovarectomia (OVX) e reposição por P4. Verificamos por meio de histomorfometria e imunohistoquímica (PCNA) uma diminuição da área de estroma uterino e do índice de proliferação. As quantificações proteícas por Western blot monstraram um aumento do PR-A nas fêmeas diabéticas OVX e nas tratadas pela P4. Ressalta-se que as fêmeas DM1 tratados pela P4 não apresentaram a mesma expressão do RNAm para o fator de crescimento Hoxa-10. Houve também um aumento do RNAm da p27 nas fêmeas DM1 não tratadas, visto por qPCR. Nossos resultados demonstraram que o DM1 interfere negativamente na resposta proliferativa promovida pela P4. Contribuindo para compreensão dos mecanismos biológicos pelos quais o diabetes compromete as funções reprodutivas. / Progesterone (P4)-mediated cell proliferation is essential for uterine function. Therefore, alteration in this process could compromise reproduction. The type 1 diabetes (DM1) relates to several reproductive disturbs. However, the impact of DM1 on the P4 function is still not elucidated. Thus, we used alloxan-induced diabetic mice females subjected to ovariectomy and hormonal replacement therapy with P4. Histomorphometrical and immunohistochemistry to PCNA approaches showed a decrease of the uterine stromal area and the cell proliferation index. Protein quantification by Western blot showed increased levels of PR-A in both ovariectomized and P4-treated diabetic females. Importantly, P4 did not recovered the mRNA expression to the Hoxa-10 transcription factor in diabetic females. Additionally, qPCR analysis revealed increased level of p27 mRNA in diabetic females non-treated with P4. Together these results show that DM1 has a negative action on the P4-mediated cell proliferative response. These are new and important results to a better understand of the biological mechanisms by which diabetes affects the reproductive functions.
2

O impacto do diabetes Mellitus do tipo 1 sobre a ação da resposta proliferativa estimulada pela progesterona no ambiente uterino de camundongos. / The impact of type 1 Diabetes Mellitus on the progesterone-mediated cell proliferative response on mice uterine environment.

Rafael Dalbosco dos Santos 03 December 2015 (has links)
A proliferação celular mediada pela progesterona (P4) é essencial para a funcão uterina. Dessa forma, alterações nesse processo podem comprometer a reprodução. O diabetes do tipo 1 (DM1) está associado a diversos distúrbios reprodutivos. No entanto, o impacto do DM1 sobre a ação da P4 no ambiente uterino ainda não é conhecido. Para isso, utilizamos fêmeas de camundongo DM1 induzidas por aloxana, submetidas à ovarectomia (OVX) e reposição por P4. Verificamos por meio de histomorfometria e imunohistoquímica (PCNA) uma diminuição da área de estroma uterino e do índice de proliferação. As quantificações proteícas por Western blot monstraram um aumento do PR-A nas fêmeas diabéticas OVX e nas tratadas pela P4. Ressalta-se que as fêmeas DM1 tratados pela P4 não apresentaram a mesma expressão do RNAm para o fator de crescimento Hoxa-10. Houve também um aumento do RNAm da p27 nas fêmeas DM1 não tratadas, visto por qPCR. Nossos resultados demonstraram que o DM1 interfere negativamente na resposta proliferativa promovida pela P4. Contribuindo para compreensão dos mecanismos biológicos pelos quais o diabetes compromete as funções reprodutivas. / Progesterone (P4)-mediated cell proliferation is essential for uterine function. Therefore, alteration in this process could compromise reproduction. The type 1 diabetes (DM1) relates to several reproductive disturbs. However, the impact of DM1 on the P4 function is still not elucidated. Thus, we used alloxan-induced diabetic mice females subjected to ovariectomy and hormonal replacement therapy with P4. Histomorphometrical and immunohistochemistry to PCNA approaches showed a decrease of the uterine stromal area and the cell proliferation index. Protein quantification by Western blot showed increased levels of PR-A in both ovariectomized and P4-treated diabetic females. Importantly, P4 did not recovered the mRNA expression to the Hoxa-10 transcription factor in diabetic females. Additionally, qPCR analysis revealed increased level of p27 mRNA in diabetic females non-treated with P4. Together these results show that DM1 has a negative action on the P4-mediated cell proliferative response. These are new and important results to a better understand of the biological mechanisms by which diabetes affects the reproductive functions.
3

Mechanisms of Appendicular Dermal Bone Loss and Endochondral Bone Expansion during the Fin-To-Limb Transition

Lalonde, Robert 15 August 2018 (has links)
The evolution of the tetrapod limb from paired fish fins involved drastic changes to the appendicular dermal and endochondral skeleton. Fish fin rays were lost, and the endochondral bone was modified and elaborated to form three distinct segments common to all tetrapod limbs: the stylopod, the zeugopod, and the autopod. Identifying the molecular mechanisms that contributed to these morphological changes presents a unique insight into our own evolutionary history. Chapter II of this thesis focuses on the actinodin gene family and how their disappearance from the tetrapod genome during the fin-to-limb transition may have contributed to the loss of dermal fin rays. The actinodin genes code for structural proteins in the actinotrichia, rigid fibers being the first exoskeletal elements formed during zebrafish fin development. We have identified tisse-specific cis-acting regulatory elements responsible for actinodin1 activation in the fin fold ectoderm and mesenchyme. These elements are only partially functional in transgenic reporter mouse limbs. We therefore propose that changes to actinodin gene regulation contributed to the loss of the actinodin genes during limb evolution. The actinotrichia also serve as a scaffold for the migration of cells from the distal fin mesenchyme, which has been shown to differentiate into fin ray osteoblasts. In fact, both actinotrichia and distal fin mesenchyme migration defects have been proposed as events that may lead to the loss of dermal bone during the fin-to-limb transition. Chapter III of this thesis tests the effects of distal fin mesenchyme ablation on larval and adult zebrafish fin development. Following the chemo/genetic ablation of these cells, zebrafish display actinotrichia, fin fold, and fin ray defects supporting the hypothesis the defects in distal fin mesenchyme may have contributed to the loss of dermal fin rays during tetrapod evolution. Previous research has shown that changes in the regulation of the 5’HoxA/D genes may have had consequences for both actinodin regulation and the migration of distal fin fold mesenchyme. Chapter IV of this thesis examines the contributions of Hoxa11 regulatory changes to the evolution of the pentadactyl, or five-digit state, in tetrapods. Through a novel tetrapod-specific enhancer, Hoxa11 is repressed from the presumptive limb autopod region in mice. In fish, hoxa11b is expressed distally and ectopic expression of Hoxa11 in the distal limb bud produces mice with polydactyly (extra digits), an ancestral tetrapod character state. In conclusion, we have provided evidence that actinotrichia defects (potentially though changes in actinodin regulation) and fin fold mesenchyme defects may have contributed to the loss of fin dermal bone during the fin-to-limb transition. Our data also shows these two events may have been linked as fin fold mesenchyme require actinotrichia to migrate correctly, while actinotrichia maintenance relies on Actinodin secretion from fin fold mesenchyme. Furthermore, we have also contributed to the growing body of evidence that proposes changes in 5’HoxA/D regulation during the fin-to-limb transition underlie changes in appendicular dermal and endochondral bone. Therefore, it is possible that modifications in shared gene regulatory networks underlie both dermal and endochondral bone evolution during the fin-to-limb transition.
4

Molecular Evolution of Duplicated Ray Finned Fish HoxA Clusters: Increased Synonymous Substitution Rate and Asymmetrical Co-divergence of Coding and Non-coding Sequences

Wagner, Günter P., Takahashi, Kazuhiko, Lynch, Vincent, Prohaska, Sonja J., Fried, Claudia, Stadler, Peter F., Amemiya, Chris 12 October 2018 (has links)
In this study the molecular evolution of duplicated HoxA genes in zebrafish and fugu has been investigated. All 18 duplicated HoxA genes studied have a higher non-synonymous substitution rate than the corresponding genes in either bichir or paddlefish, where these genes are not duplicated. The higher rate of evolution is not due solely to a higher non-synonymous-to-synonymous rate ratio but to an increase in both the non-synonymous as well as the synonymous substitution rate. The synonymous rate increase can be explained by a change in base composition, codon usage, or mutation rate. We found no changes in nucleotide composition or codon bias. Thus, we suggest that the HoxA genes may experience an increased mutation rate following cluster duplication. In the non-Hox nuclear gene RAG1 only an increase in non-synonymous substitutions could be detected, suggesting that the increased mutation rate is specific to duplicated Hox clusters and might be related to the structural instability of Hox clusters following duplication. The divergence among paralog genes tends to be asymmetric, with one paralog diverging faster than the other. In fugu, all b-paralogs diverge faster than the a-paralogs, while in zebrafish Hoxa-13a diverges faster. This asymmetry corresponds to the asymmetry in the divergence rate of conserved non-coding sequences, i.e., putative cis-regulatory elements. These results suggest that the 5′ HoxA genes in the same cluster belong to a co-evolutionary unit in which genes have a tendency to diverge together.
5

Patterning of stem cells during limb regeneration in Ambystoma mexicanum

Rönsch, Kathleen 22 January 2018 (has links) (PDF)
Axolotl uniquely generates blastema cells as a pool of progenitor/stem cells to restore an entire limb, a particular property that other organisms, such as humans, do not have. What underlies these differences? Is the main difference that cells residing at the amputation plane (in the stump) undergo reprogramming processes to re-enter the embryonic program, which allows developmental patterning to start, or are there fundamental differences? There is also a significant debate about whether regeneration occurs via stem cell differentiation or by dedifferentiation of mature limb tissue. The aim of my thesis was to address following questions: Are the cells in the blastema reprogrammed or differentiated to regenerate? Are the blastema cells genetically reactivated de novo during regeneration? How does the amputated limb exactly know which part of the limb needs to be regenerate? Using a novel technique of long-term genetic fate mapping, my team demonstrated that dedifferentiation in regenerated axolotl muscle tissue does not occur. Instead, PAX7+ satellite cells indeed play an important role during muscle regeneration in the axolotl limb. Surprisingly, this is in contrast to the newt, which regenerates muscle cells through a dedifferentiation process. Therefore, there is a fundamental difference that underlies the regenerative mechanism ((Sandoval-Guzman et al., 2014) [KR1]). This demonstrates that there is an unexpected diversity and flexibility of cellular mechanims used during limb regeneration, even among two closely related species. Finally, if one salamander species uses a mammalian regenerative strategy (Cornelison and Wold, 1997; Collins et al., 2005) involving stem cells and another uses a dedifferentiative strategy, this raises the question of whether there are other fundamental aspects of regeneration that could also be anomalous. This hypothesis is promising since there could be more than one possible mechanism to induce mammalian regeneration. The process of limb regeneration in principle seems to be more similar to those of limb development as historically assumed. We showed molecularly that embryonic players are reused during regeneration by reactivating the position- and tissue-specific developmental gene programs by using the newly isolated Twist sequences as early blastema cell markers ((Kragl et al., 2013) [KR2]). To gain insights into the molecular mechanisms of the P/D limb patterning in general, it was crucial to study the early patterning events of the resident progenitor/stem cells by using the specific blastema cell marker HoxA as a positional marker along the proximo-distal axis. Our HOXA protein analysis using high molecular and cellular resolution as well as transplantation assays demonstrated for the first time that axolotl limb blastema cells acquire their positional identity in a proximal to distal sequence. We found a hierarchy of cellular restrictions in positional identities. Amputation at the level of the upper arm showed that the blastema harbors cells, which convert to lower arm and hand. We observed ((Roensch et al., 2013) [KR3]) for the first time that intercalation- the intermediate element (lower arm) arises later from an interaction between the proximal and distal cells identities- does not occur. Intercalation, which has been an accepted model for a long time, is not the patterning mechanism underlying normal (without any manipulation) limb regeneration that is unique to axolotl. We further demonstrated, using the Hox genes as markers that positional identity is cell-type specific since their effects were confirmed to be present in the lateral plate mesoderm- derived cells of the limb. As our knowledge about limb blastemas expands concerning cell composition and molecular events controlling patterning, the similarity to development is becoming more and more clear. My work has resolved many ambiguities surrounding the molecularly identification of different types of blastema cells and how P/D limb patterning occurs during regeneration in comparison to development. It has highlighted the importance of combining high-resolution methods, such as in situ hybridizations, single-cell PCR (sc-PCR) of individual dissociated blastema cells and genetic labeling methods with grafting experiments to map cell fates in vivo. In addition to understanding the processes of regeneration, another long-term goal in the regenerative medicine field is to identify key molecules that trigger the regeneration of tissues. Recently, my colleague Takuji Sugiura (Sugiura et al., 2016) observed that an early event of blastema formation is the secretion of molecules like MLP (MARCKS-like protein), which induces wound-associated cell cycle re-entry. Such findings further increase the enthusiasm of biologists to understand the underlying principles of regeneration. By building our knowledge of the molecules and pathways that are involved in tissue regeneration, we increase the possibility of identifying a way to ‘activate’ regenerative processes in humans and thus reach the final goal of regenerative medicine, which is to use the concepts of cellular reprogramming, stem cell biology and tissue engineering to repair complex body structures.
6

Patterning of stem cells during limb regeneration in Ambystoma mexicanum

Rönsch, Kathleen 30 November 2017 (has links)
Axolotl uniquely generates blastema cells as a pool of progenitor/stem cells to restore an entire limb, a particular property that other organisms, such as humans, do not have. What underlies these differences? Is the main difference that cells residing at the amputation plane (in the stump) undergo reprogramming processes to re-enter the embryonic program, which allows developmental patterning to start, or are there fundamental differences? There is also a significant debate about whether regeneration occurs via stem cell differentiation or by dedifferentiation of mature limb tissue. The aim of my thesis was to address following questions: Are the cells in the blastema reprogrammed or differentiated to regenerate? Are the blastema cells genetically reactivated de novo during regeneration? How does the amputated limb exactly know which part of the limb needs to be regenerate? Using a novel technique of long-term genetic fate mapping, my team demonstrated that dedifferentiation in regenerated axolotl muscle tissue does not occur. Instead, PAX7+ satellite cells indeed play an important role during muscle regeneration in the axolotl limb. Surprisingly, this is in contrast to the newt, which regenerates muscle cells through a dedifferentiation process. Therefore, there is a fundamental difference that underlies the regenerative mechanism ((Sandoval-Guzman et al., 2014) [KR1]). This demonstrates that there is an unexpected diversity and flexibility of cellular mechanims used during limb regeneration, even among two closely related species. Finally, if one salamander species uses a mammalian regenerative strategy (Cornelison and Wold, 1997; Collins et al., 2005) involving stem cells and another uses a dedifferentiative strategy, this raises the question of whether there are other fundamental aspects of regeneration that could also be anomalous. This hypothesis is promising since there could be more than one possible mechanism to induce mammalian regeneration. The process of limb regeneration in principle seems to be more similar to those of limb development as historically assumed. We showed molecularly that embryonic players are reused during regeneration by reactivating the position- and tissue-specific developmental gene programs by using the newly isolated Twist sequences as early blastema cell markers ((Kragl et al., 2013) [KR2]). To gain insights into the molecular mechanisms of the P/D limb patterning in general, it was crucial to study the early patterning events of the resident progenitor/stem cells by using the specific blastema cell marker HoxA as a positional marker along the proximo-distal axis. Our HOXA protein analysis using high molecular and cellular resolution as well as transplantation assays demonstrated for the first time that axolotl limb blastema cells acquire their positional identity in a proximal to distal sequence. We found a hierarchy of cellular restrictions in positional identities. Amputation at the level of the upper arm showed that the blastema harbors cells, which convert to lower arm and hand. We observed ((Roensch et al., 2013) [KR3]) for the first time that intercalation- the intermediate element (lower arm) arises later from an interaction between the proximal and distal cells identities- does not occur. Intercalation, which has been an accepted model for a long time, is not the patterning mechanism underlying normal (without any manipulation) limb regeneration that is unique to axolotl. We further demonstrated, using the Hox genes as markers that positional identity is cell-type specific since their effects were confirmed to be present in the lateral plate mesoderm- derived cells of the limb. As our knowledge about limb blastemas expands concerning cell composition and molecular events controlling patterning, the similarity to development is becoming more and more clear. My work has resolved many ambiguities surrounding the molecularly identification of different types of blastema cells and how P/D limb patterning occurs during regeneration in comparison to development. It has highlighted the importance of combining high-resolution methods, such as in situ hybridizations, single-cell PCR (sc-PCR) of individual dissociated blastema cells and genetic labeling methods with grafting experiments to map cell fates in vivo. In addition to understanding the processes of regeneration, another long-term goal in the regenerative medicine field is to identify key molecules that trigger the regeneration of tissues. Recently, my colleague Takuji Sugiura (Sugiura et al., 2016) observed that an early event of blastema formation is the secretion of molecules like MLP (MARCKS-like protein), which induces wound-associated cell cycle re-entry. Such findings further increase the enthusiasm of biologists to understand the underlying principles of regeneration. By building our knowledge of the molecules and pathways that are involved in tissue regeneration, we increase the possibility of identifying a way to ‘activate’ regenerative processes in humans and thus reach the final goal of regenerative medicine, which is to use the concepts of cellular reprogramming, stem cell biology and tissue engineering to repair complex body structures.
7

The duplication of the Hox gene clusters in teleost fishes

Prohaska, Sonja, Stadler, Peter F. 23 October 2018 (has links)
Higher teleost fishes, including zebrafish and fugu, have duplicated their Hox genes relative to the gene inventory of other gnathostome lineages. The most widely accepted theory contends that the duplicate Hox clusters orginated synchronously during a single genome duplication event in the early history of ray-finned fishes. In this contribution we collect and re-evaluate all publicly available sequence information. In particular, we show that the short Hox gene fragments from published PCR surveys of the killifish Fundulus heteroclitus, the medaka Oryzias latipes and the goldfish Carassius auratus can be used to determine with little ambiguity not only their paralog group but also their membership in a particular cluster. Together with a survey of the genomic sequence data from the pufferfish Tetraodon nigroviridis we show that at least percomorpha, and possibly all eutelosts, share a system of 7 or 8 orthologous Hox gene clusters. There is little doubt about the orthology of the two teleost duplicates of the HoxA and HoxB clusters. A careful analysis of both the coding sequence of Hox genes and of conserved non-coding sequences provides additional support for the “duplication early” hypothesis that the Hox clusters in teleosts are derived from eight ancestral clusters by means of subsequent gene loss; the data remain ambiguous, however, in particular for the HoxC clusters. Assuming the “duplication early” hypothesis we use the new evidence on the Hox gene complements to determine the phylogenetic positions of gene-loss events in the wake of the cluster duplication. Surprisingly, we find that the resolution of redundancy seems to be a slow process that is still ongoing. A few suggestions on which additional sequence data would be most informative for resolving the history of the teleostean Hox genes are discussed.
8

Expressão proteíca do gene HOXA10 e dos receptores de estrogênio e progesterona no epitélio, estroma e tecido muscular liso perilesional de endometriose e do reto-sigmoide / HOXA10 as well as estrogen and progesterone receptor protein expression in the epithelium, stroma, and adjacent smooth muscle of rectosigmoid endometriosis.

Zanatta, Alysson 23 July 2013 (has links)
INTRODUÇÃO: Apesar de a endometriose profunda (EPF) ser a forma da doença de maior repercussão clínica, os estudos sobre a doença costumam ser baseados em lesões de endometriose ovariana (EOV) e peritoneal (EPT). A patogênese da EPF ainda é objeto de amplo debate, pois há poucos estudos feitos exclusivamente com lesões de EPF. O fator de transcrição codificado pelo gene homeobox A10 (HOXA10) regula a conferência de identidade tecidual de útero ao ducto paramesonéfrico indiferenciado durante o período embrionário. O gene mantém um padrão de expressão temporal e espacial bem definido e, durante a fase adulta, continua expresso no miométrio e endométrio. Sugere-se que HOXA10 esteja implicado na patogênese da endometriose, pois é expresso em EOV, EPT, endometriose pulmonar e endometriose retovaginal, um tipo de EPF. Possivelmente, o gene HOXA10 seja necessário para conferir identidade de endometriose a um tecido indiferenciado. O estradiol e a progesterona ativam a transcrição do gene HOXA10 e regulam diretamente sua ação. Esses hormônios estão envolvidos na patogênese da EPF, e suas atividades podem ser inferidas pelo estudo da expressão tecidual de seus receptores. A endometriose de reto-sigmoide (ERS) é um modelo representativo para o estudo da EPF. Neste estudo, avaliamos a expressão proteica do fator de transcrição HOXA10, das isoformas ? (ER-alfa) e beta (ER-beta) dos receptores de estrogênio, e do receptor de progesterona AB (PR-AB) e sua isoforma B (PR-B) na lesão (LES) e no tecido muscular liso perilesional (TMLP) de ERS de pacientes inférteis, durante as fases proliferativa e secretora do ciclo menstrual. MÉTODOS: amostras de LES e TMLP de ERS de 18 pacientes (9 operadas em cada fase do ciclo menstrual) foram agrupadas em blocos de microarranjos de tecidos (tissue microarray). As amostras foram coradas com anticorpos específicos para análise imunoistoquímica de cada uma das proteínas. Foram então avaliadas por microscopia ótica (MO) e pela análise das imagens digitalizadas das lâminas com por um software específico, a análise morfométrica (AM). RESULTADOS: HOXA10 foi expresso no estroma de LES de ERS durante a fase secretora, de acordo com a MO. ER-alfa e ER-betaforam expressos em glândulas e estroma de LES e TMLP de ERS durante ambas as fases do ciclo, de acordo com a MO e a AM. PR-AB e PR-B foram expressos em glândulas e estroma de LES de ERS durante ambas as fases do ciclo, de acordo com a MO. PR-B foi mais expresso durante a fase secretora, independentemente do local de expressão, segundo a AM. A expressão de HOXA10 correlacionou-se diretamente com PR-AB e PR-B na ERS, segundo a AM. Não houve correlação entre ER-alfa e ER-beta com HOXA10, PR-AB ou PR-B em nenhuma fase do ciclo ou local de expressão de ERS. CONCLUSÕES: HOXA10 é expresso em ERS, um local fora do seu eixo espacial de expressão. A presença de HOXA10 pode ser necessária para conferir a identidade \"de novo\" na EPF, incluindo ERS. A progesterona pode ativar o gene HOXA10 e regular esta ação, possivelmente mediada por PR-B. O estradiol exerce sua ação mitógena na ERS através ER-alfa e ER-beta / INTRODUCTION: Although deep endometriosis (DE) is the major clinical form of endometriosis, studies regarding the disease are typically based on ovarian (OE) and peritoneal (PE) lesions. DE pathogenesis is still a matter of great discussion because there are few studies exclusively involving DE lesions. The transcription factor encoded by the homeobox gene A10 (HOXA10) regulates the identity imparted to the undifferentiated paramesonephric duct during embryogenesis. The gene is expressed in the myometrium and endometrium during adult life in a well-defined spatial and temporal mode. It has been suggested that HOXA10 plays a role in endometriosis pathogenesis because it is expressed in OE, PE, pulmonary endometriosis, and rectovaginal endometriosis, which is a clinical form of DE. Thus, HOXA10 may be necessary for \"de novo\" endometrial development from undifferentiated tissues. Both estradiol and progesterone activate HOXA10 transcription and directly regulate its action. These hormones are involved in DE pathogenesis, and therefore their activities could be assessed by studying the tissue expression of their receptors. Rectosigmoid endometriosis (RE) is a representative model for studying DE. In this study, we evaluated the protein expression of HOXA10, the estrogen receptor (ER) isoforms alfa (ER-alfa) and beta (ER-beta), the progesterone receptor AB (PR), and the PR isoform B (PR-B) in lesions (LES) and adjacent smooth muscle (SM) of RE from infertile patients during the proliferative and secretory phases of the menstrual cycle. METHODS: LES and SM samples from RE patients were grouped in tissue microarray blocks. Each of the proteins was analyzed by immunohistochemistry using regular optical microscopy (OM) and a software-assisted analysis of digitalized images as well as morphometric analysis (MA). RESULTS: HOXA10 was expressed in the stroma of the LES during the secretory phase based on OM. ER-alfa and ER-beta were expressed in the glands and stroma of LES and SM during both phases based on OM and MA. PR and PR-B were expressed in the glands and stroma of LES during both phases; however, PR-B had higher expression during the secretory phase, independent of its expression in the LES or SM. HOXA10 expression was directly correlated with PR and PR-B expression in RE. In addition, there was no correlation between the expression of ER-alfa and ER-beta with HOXA10, PR, or PR-B during any phase of the menstrual cycle or site of expression. CONCLUSIONS: HOXA10 is expressed in RE outside of its spatial domain of expression, and may be necessary for \"de novo\" development of DE, including RE. Progesterone might stimulate HOXA10 expression and regulate this action, which is most likely mediated by PR-B. Moreover, estradiol exerts its mitogenic effect in RE though ER-alfa and ER-beta
9

Expressão proteíca do gene HOXA10 e dos receptores de estrogênio e progesterona no epitélio, estroma e tecido muscular liso perilesional de endometriose e do reto-sigmoide / HOXA10 as well as estrogen and progesterone receptor protein expression in the epithelium, stroma, and adjacent smooth muscle of rectosigmoid endometriosis.

Alysson Zanatta 23 July 2013 (has links)
INTRODUÇÃO: Apesar de a endometriose profunda (EPF) ser a forma da doença de maior repercussão clínica, os estudos sobre a doença costumam ser baseados em lesões de endometriose ovariana (EOV) e peritoneal (EPT). A patogênese da EPF ainda é objeto de amplo debate, pois há poucos estudos feitos exclusivamente com lesões de EPF. O fator de transcrição codificado pelo gene homeobox A10 (HOXA10) regula a conferência de identidade tecidual de útero ao ducto paramesonéfrico indiferenciado durante o período embrionário. O gene mantém um padrão de expressão temporal e espacial bem definido e, durante a fase adulta, continua expresso no miométrio e endométrio. Sugere-se que HOXA10 esteja implicado na patogênese da endometriose, pois é expresso em EOV, EPT, endometriose pulmonar e endometriose retovaginal, um tipo de EPF. Possivelmente, o gene HOXA10 seja necessário para conferir identidade de endometriose a um tecido indiferenciado. O estradiol e a progesterona ativam a transcrição do gene HOXA10 e regulam diretamente sua ação. Esses hormônios estão envolvidos na patogênese da EPF, e suas atividades podem ser inferidas pelo estudo da expressão tecidual de seus receptores. A endometriose de reto-sigmoide (ERS) é um modelo representativo para o estudo da EPF. Neste estudo, avaliamos a expressão proteica do fator de transcrição HOXA10, das isoformas ? (ER-alfa) e beta (ER-beta) dos receptores de estrogênio, e do receptor de progesterona AB (PR-AB) e sua isoforma B (PR-B) na lesão (LES) e no tecido muscular liso perilesional (TMLP) de ERS de pacientes inférteis, durante as fases proliferativa e secretora do ciclo menstrual. MÉTODOS: amostras de LES e TMLP de ERS de 18 pacientes (9 operadas em cada fase do ciclo menstrual) foram agrupadas em blocos de microarranjos de tecidos (tissue microarray). As amostras foram coradas com anticorpos específicos para análise imunoistoquímica de cada uma das proteínas. Foram então avaliadas por microscopia ótica (MO) e pela análise das imagens digitalizadas das lâminas com por um software específico, a análise morfométrica (AM). RESULTADOS: HOXA10 foi expresso no estroma de LES de ERS durante a fase secretora, de acordo com a MO. ER-alfa e ER-betaforam expressos em glândulas e estroma de LES e TMLP de ERS durante ambas as fases do ciclo, de acordo com a MO e a AM. PR-AB e PR-B foram expressos em glândulas e estroma de LES de ERS durante ambas as fases do ciclo, de acordo com a MO. PR-B foi mais expresso durante a fase secretora, independentemente do local de expressão, segundo a AM. A expressão de HOXA10 correlacionou-se diretamente com PR-AB e PR-B na ERS, segundo a AM. Não houve correlação entre ER-alfa e ER-beta com HOXA10, PR-AB ou PR-B em nenhuma fase do ciclo ou local de expressão de ERS. CONCLUSÕES: HOXA10 é expresso em ERS, um local fora do seu eixo espacial de expressão. A presença de HOXA10 pode ser necessária para conferir a identidade \"de novo\" na EPF, incluindo ERS. A progesterona pode ativar o gene HOXA10 e regular esta ação, possivelmente mediada por PR-B. O estradiol exerce sua ação mitógena na ERS através ER-alfa e ER-beta / INTRODUCTION: Although deep endometriosis (DE) is the major clinical form of endometriosis, studies regarding the disease are typically based on ovarian (OE) and peritoneal (PE) lesions. DE pathogenesis is still a matter of great discussion because there are few studies exclusively involving DE lesions. The transcription factor encoded by the homeobox gene A10 (HOXA10) regulates the identity imparted to the undifferentiated paramesonephric duct during embryogenesis. The gene is expressed in the myometrium and endometrium during adult life in a well-defined spatial and temporal mode. It has been suggested that HOXA10 plays a role in endometriosis pathogenesis because it is expressed in OE, PE, pulmonary endometriosis, and rectovaginal endometriosis, which is a clinical form of DE. Thus, HOXA10 may be necessary for \"de novo\" endometrial development from undifferentiated tissues. Both estradiol and progesterone activate HOXA10 transcription and directly regulate its action. These hormones are involved in DE pathogenesis, and therefore their activities could be assessed by studying the tissue expression of their receptors. Rectosigmoid endometriosis (RE) is a representative model for studying DE. In this study, we evaluated the protein expression of HOXA10, the estrogen receptor (ER) isoforms alfa (ER-alfa) and beta (ER-beta), the progesterone receptor AB (PR), and the PR isoform B (PR-B) in lesions (LES) and adjacent smooth muscle (SM) of RE from infertile patients during the proliferative and secretory phases of the menstrual cycle. METHODS: LES and SM samples from RE patients were grouped in tissue microarray blocks. Each of the proteins was analyzed by immunohistochemistry using regular optical microscopy (OM) and a software-assisted analysis of digitalized images as well as morphometric analysis (MA). RESULTS: HOXA10 was expressed in the stroma of the LES during the secretory phase based on OM. ER-alfa and ER-beta were expressed in the glands and stroma of LES and SM during both phases based on OM and MA. PR and PR-B were expressed in the glands and stroma of LES during both phases; however, PR-B had higher expression during the secretory phase, independent of its expression in the LES or SM. HOXA10 expression was directly correlated with PR and PR-B expression in RE. In addition, there was no correlation between the expression of ER-alfa and ER-beta with HOXA10, PR, or PR-B during any phase of the menstrual cycle or site of expression. CONCLUSIONS: HOXA10 is expressed in RE outside of its spatial domain of expression, and may be necessary for \"de novo\" development of DE, including RE. Progesterone might stimulate HOXA10 expression and regulate this action, which is most likely mediated by PR-B. Moreover, estradiol exerts its mitogenic effect in RE though ER-alfa and ER-beta

Page generated in 0.0262 seconds