• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Mitigative Techniques for Non-Contact Lap Splices in Concrete Block Construction

2014 April 1900 (has links)
A previously completed study in the field of concrete block construction by Ahmed and Feldman (2012) indicated that, on average, the reinforcing bars in non-contact lap splices, where the lapped bars are located in adjacent cells, only develop 71% of the tensile resistance of spliced bars which are in contact. An experimental program was therefore initiated to design and evaluate remedial measures which can potentially increase the tensile resistance of non-contact lap splices to that of contact lap splice of the same lap length. Implementation of the proposed measures in various field situations was also analyzed. Six unique remedial splice details, along with standard contact and unaltered non-contact lap splices were evaluated and compared. The mitigative details included providing additional confinement, installing knock-out webs, placing splice reinforcement between the lapped bars, and combinations of these aforementioned details. Three replicates of each splice detail were constructed for a total of 24 wall splice specimens. Each wall splice specimen was reinforced with No. 15 Grade 400 deformed steel reinforcing bars with 200 mm lap splice lengths at located the midspan. The specimens were tested in a horizontal position under a monotonic, four-point loading geometry. Load and deflection data were collected throughout testing and were subsequently used in an iterative moment-curvature analysis to calculate the maximum tensile resistance of the spliced reinforcement. This was then used to compare the structural performance of each remedial splice detail to the standard contact and non-contact lap splices. The wall splice specimens which contained non-contact lap splices with knock-out webs, s-shaped, and transverse reinforcement in the splice region achieved similar tensile capacities as the wall splice specimens with standard contact lap splices. Industry professionals have indicated that the installation of the remedial measures evaluated in this study would not affect the constructability of masonry assemblages in field situations. The splice detail with knock-out webs confined within the lap splice length was determined to be the most viable procedure as it can be installed to increase the resistance of non-contact lap splices in almost all construction situations. This remedial procedure was able to improve the tensile resistance of the lapped reinforcement by 63% compared to the wall splice specimens with standard non-contact lap splices.
2

Modèles de croissance aléatoire et théorèmes de forme asymptotique : les processus de contact / Models and asymptotic shape theorems : contact processes

Deshayes, Aurélia 10 December 2014 (has links)
Cette thèse s'inscrit dans l'étude des systèmes de particules en interaction et plus précisément dans celle des modèles de croissance aléatoire qui représentent un quantité qui grandit au cours du temps et s'étend sur un réseau. Ce type de processus apparaît naturellement quand on regarde la croissance d'un cristal ou bien la propagation d'une épidémie. Cette dernière est bien modélisée par le processus de contact introduit en 1974 par Harris. Le processus de contact est un des plus simples systèmes de particules en interaction présentant une transition de phase et l'on connaît maintenant bien son comportement sur ses phases. De nombreuses questions ouvertes sur ses extensions, notamment celles de formes asymptotiques, ont motivé ce travail. Après la présentation de ce processus et de certaines de ses extensions, nous introduisons et étudions une nouvelle variante: le processus de contact avec vieillissement où les particules ont un âge qui influence leur capacité à donner naissance à leurs voisines. Nous effectuerons pour ce modèle un couplage avec une percolation orientée inspiré de celui de Bezuidenhout-Grimmett et nous montrerons la croissance d'ordre linéaire de ce processus. Dans la dernière partie de la thèse, nous nous intéressons à la preuve d'un théorème de forme asymptotique pour des modèles généraux de croissance aléatoire grâce à des techniques sous-Additives, parfois complexes à mettre en place à cause de la non 'survie presque sûre' de nos modèles. Nous en concluons en particulier que le processus de contact avec vieillissement, le processus de contact en environnement dynamique, la percolation orientée avec immigration hostile, et le processus de contact avec sensibilisation vérifient des résultats de forme asymptotique / This thesis is a contribution to the mathematical study of interacting particles systems which include random growth models representing a spreading shape over time in the cubic lattice. These processes are used to model the crystal growth or the spread of an infection. In particular, Harris introduced in 1974 the contact process to represent such a spread. It is one of the simplest interacting particles systems which exhibits a critical phenomenon and today, its behaviour is well-Known on each phase. Many questions about its extensions remain open and motivated our work, especially the one on the asymptotic shape. After the presentation of the contact process and its extensions, we introduce a new one: the contact process with aging where each particle has an age age that influences its ability to give birth to its neighbours. We build a coupling between our process and a supercritical oriented percolation adapted from Bezuidenhout-Grimmett's construction and we establish the 'at most linear' growth of our process. In the last part of this work, we prove an asymptotic shape theorem for general random growth models thanks to subadditive techniques, which can be complicated in the case of non-Permanent models conditioned to survive. We conclude that the process with aging, the contact process in randomly evolving environment, the oriented percolation with hostile immigration and the bounded modified contact process satisfy asymptotic shape results

Page generated in 0.1216 seconds