• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception de réseaux optiques en tenant compte de la tolérance aux fautes d’un ensemble quelconque de liens / Optical network design considering fault tolerance to any set of link failures

Jara, Nicolás 25 July 2018 (has links)
L'augmentation rapide de la demande en bande passante dans les réseaux de télécommunication d'aujourd'hui a provoqué une augmentation correspondante de l'utilisation de technologies basées dans les réseaux optiques de type WDM. Ceci étant, la recherche a identifié une limite forte dans la capacité de croissance de ces infrastructures, du point de la vitesse de transmission, limite qui sera atteinte bientôt. Cette situation conduit à des efforts de recherche pour faire évoluer les architectures courantes vers de nouvelles solutions capables d'absorber cette croissance dans la demande. Par exemple, les réseaux d'aujourd'hui sont opérés de façon statique. Ceci est inefficace dans l'utilisation des ressources, et la nécessité d'améliorer cet état de fait est reconnue par la recherche ainsi que par l'industrie. Plusieurs solutions ont été proposées pour passer à des modes de fonctionnement dynamiques, mais les diminutions des coûts qu'ont été obtenues n'ont pas encore convaincu les industriels. Cette thèse fait une nouvelle proposition de cette nature, qui inclut une nouvelle et très rapide méthodologie pour évaluer la probabilité de blocage dans ce type de système, qui est le cœur de notre procédure de conception. Le travail réalisé a conduit à la découverte de solutions pour l'ensemble des problèmes principaux d'une architecture de transmission optique. Il s'agit de décider chemins à utiliser par chaque utilisateur et la longueur d'onde (Wavelength Assignment Problem). Ensuite, il faut choisir le nombre total de longueurs d'onde qui sera nécessaire (Wavelength Dimensioning Problem). Enfin, il faut proposer les procédures à suivre en cas de défaillance d'un ou de plusieurs liens du réseau (Fault Tolerance Problem). La thèse propose une solution globale à cet ensemble de problèmes, et montre que les gains que l'on peut espérer dans l'opération de ces réseaux sont significativement plus importants qu'avec les autres propositions existantes. / The rapid increase in demand for bandwidth from existing networks has caused a growth in the use of technologies based on WDM optical networks. Nevertheless, this decade researchers have recognized a “Capacity Crunch” on optical networks, i.e. transmission capacity limit on optical fiber is close to be reached in the near future. This situation claims to evolve the current WDM optical networks architectures. For example, optical networks are operated statically. This operation is inefficient in the usage of network resources. To solve this problem Dynamic optical networks solve this inefficiences, but it has not been implemented since network cost savings are not enough to convince enterprises. The design of dynamic optical networks decomposes into different tasks, where the engineers must organize the way the main system's resources are used. All of these tasks, have to guarantee certain level of quality of service pre-established on the Service Level Agreement. Then, we propose a new fast and accurate analytical method to evaluate the blocking probability in these systems. This evaluation allows network designers to quickly solve higher order problems. More specifically, network operators face the challenge of solving: which wavelength is going to be used by each user (known as Wavelength Assignment), the number of wavelengths needed on each network link (called as Wavelength Dimensioning), the set of paths enabling each network user to transmit (known as Routing) and how to deal with link failures when the network is operating (called as Fault Tolerance capacity). This thesis proposes a joint solution to these problems, and it may provide sufficient network cost savings to foster telecommunications companies to migrate from the current static operation to a dynamic one.
2

Modeling Future All-Optical Networks without Buffering Capabilities

De Vega Rodrigo, Miguel 27 October 2008 (has links)
In this thesis we provide a model for a bufferless optical burst switching (OBS) and an optical packet switching (OPS) network. The thesis is divided in three parts. In the first part we introduce the basic functionality and structure of OBS and OPS networks. We identify the blocking probability as the main performance parameter of interest. In the second part we study the statistical properties of the traffic that will likely run through these networks. We use for this purpose a set of traffic traces obtained from the Universidad Politécnica de Catalunya. Our conclusion is that traffic entering the optical domain in future OBS/OPS networks will be long-range dependent (LRD). In the third part we present the model for bufferless OBS/OPS networks. This model takes into account the results from the second part of the thesis concerning the LRD nature of traffic. It also takes into account specific issues concerning the functionality of a typical bufferless packet-switching network. The resulting model presents scalability problems, so we propose an approximative method to compute the blocking probability from it. We empirically evaluate the accuracy of this method, as well as its scalability.
3

A Preemptive Channel Allocation Mechanism for GSM/GPRS Cellular Networks

Yang, Wei-Chun 23 August 2001 (has links)
In the near future, the integration of GSM and GPRS services will bring the wireless personal communication networks into a new era. With the extreme growth in the number of users for contending limited resources, an efficient channel allocation scheme for GSM/GPRS users become very important. Currently, existing channel allocation schemes do not consider the various characteristics of traffic classes. Consequently, users can not obtain their optimal channel resources in delivering different types of traffic. In this thesis, a preemptive channel allocation mechanism is introduced for GSM/GPRS cellular networks. Based on the call requests, for different types of services, we classify the traffic into GSM, real-time GPRS and non-real-time GPRS. Two channel thresholds are defined. TGSM/GPRS is used to separate the channels between GSM and GPRS users, while TGPRS_rt is used to separate the channels between real-time and non-real-time GPRS users. Since the two thresholds can be dynamically adjusted based on the number of call requests, the channel utilization is increased and less resources are wasted. Note that in our proposed scheme, high-priority users¡]i.e., GSM handoff calls¡^can preempt the channels being used by low-priority users¡]i.e., non-real-time GPRS calls¡^. Hence, the call blocking probability of high-priority calls can be significantly reduced and their quality of services can be guaranteed as well. We build a 3-D Markov Chain mathematical model to analyze our proposed channel allocation schemes. The parameters of our interests include the call blocking probability, the average number of active calls, the average call completion rate and the overall channel utilization. To verify our mathematical results, we employ OPNET simulator to simulate the proposed schemes. Through the mathematical and simulation results, we have observed that with the preemptive channel allocation, the high-priority calls¡]i.e., GSM and real-time GPRS¡^can achieve relatively low blocking probability while slightly increasing the blocking probability of non-real-time GPRS calls. Besides, the overall channel utilization is greatly improved due to the appropriate channel allocation.
4

Multi-Cell Admission Control for WCDMA Networks

Azzolin de Carvalho Pires, Gustavo January 2006 (has links)
It has long been recognized that in multi-cell WCDMA networks the admission of a new session into the system can have undesirable impact on the neighboring cells. Although admission control algorithms that take into account such multi-cell impact have been studied in the past, little attention has been paid to multi-cell admission and rate control algorithms when traffic is elastic. In this thesis, we propose a model for multi-cell multi-service WCDMA networks to study the impact of multi-cell admission and rate control algorithms on key performance measures such as the class-wise blocking and outage probabilities, block error rates, and the noise rise violation probabilities. By means of simulation we compare the performance of load based multi-cell algorithms with that of a single cell algorithm. We find that with multi-cell based algorithms the system capacity and performance (in terms of the above mentioned measures) are (in some cases significantly) better in homogeneous load scenarios as well as in the heterogeneous ’hotspot’ and ’hotaround’ scenarios. / Det har länge varit känt att i multi-cellulära WCDMA nät så kan insläppandet av en ny användarei systemet ha en icke önskvärd effekt på intilliggande celler. Fastän insläppskontrollalgoritmer (AC)som tar hänsyn till sådana multi-cellulära effekter har studerats tidigare, så har endast begränsaduppmärksamhet ägnatsåt multi-cellulär insläpps- och bittaktskontrollalgoritmer när trafiken är elastisk.I detta arbete föreslår vi en modell för WCDMA-nät med multipla celler och multipla tjänster ochsom är applicerbar för studier av av hur multi-cellulär insläpps- och bittaktskontroll inverkar påviktiga prestandamått som klassvisa spärr- och utslagningssannolikheter, blockfelssannolikheter, ochsannolikheten för överträdande av tillåten interferensnivå. Med simuleringar jämför vi prestanda förlastbaserade multi-cellalgoritmer med prestanda för singel-cellalgoritmer. Vi har funnit att med multicellalgoritmerså är systemskapacitetet och prestanda (i termer av tidigare nämnda mått) i några fallbetydligt bättre i homogena lastscenarier, samt i heterogena lastscenarier av typerna ’hotspot’ och’hotround’.
5

Call admission control using cell breathing concept for wideband CDMA

Mishra, Jyoti L., Dahal, Keshav P., Hossain, M. Alamgir January 2006 (has links)
This paper presents a Call Admission Control (CAC) algorithm based fuzzy logic to maintain the quality of service using cell breathing concept. When a new call is accepted by a cell, its current user is generally affected due to cell breathing. The proposed CAC algorithm accepts a new call only if the current users in the cell are not jeopardized. Performance evaluation is done for single-cell and multicell scenarios. In multicell scenario dynamic assignment of users to the neighboring cell, so called handoff, has been considered to achieve a lower blocking probability. Handoff and new call requests are assumed with handoff being given preference using a reserved channel scheme. CAC for different types of services are shown which depend upon the bandwidth requirement for voice, data and video. Distance, arrival rate, bandwidth and nonorthogonality factor of the signal are considered for making the call acceptance decision. The paper demonstrates that fuzzy logic with the cell breathing concept can be used to develop a CAC algorithm to achieve a better performance evaluation.
6

Performance of a Cluster that Supports Resource Reservation and On-demand Access

Leung, Gerald January 2009 (has links)
Next generation data centres are expected to support both advance resource reservation and on-demand access, but the system performance for such a computing environment has not been well-investigated. A reservation request is characterized by a start time, duration, and resource requirement. Discrete event simulation is used to study the performance characteristics of reservation systems. The basic strategy is to accept a request if resources are available and reject the request otherwise. The performance metrics considered are resource utilization and blocking probability. Results showing the impact of input parameters on these performance metrics are presented. It is found that the resource utilization is quite low. Two strategies that can be used to improve the performance for advance reservation are evaluated. The first strategy allows the start time to be delayed up to some maximum value, while the second allows the possibility of non-uniform resource allocation over the duration of the reservation. Simulation results showing the performance improvements of these two strategies are presented. Resources not used by advance reservation are used to support on-demand access. The performance metrics of interest is the mean response time. Simulation results showing the impact of resource availability and its variation over time on the mean response time are presented. These results provide valuable insights into the performance of systems with time-varying processing capacity. They can also be used to develop guidelines for the non-uniform resource allocation strategy for advance reservation in case the reserved resources are used for interactive access.
7

Performance of a Cluster that Supports Resource Reservation and On-demand Access

Leung, Gerald January 2009 (has links)
Next generation data centres are expected to support both advance resource reservation and on-demand access, but the system performance for such a computing environment has not been well-investigated. A reservation request is characterized by a start time, duration, and resource requirement. Discrete event simulation is used to study the performance characteristics of reservation systems. The basic strategy is to accept a request if resources are available and reject the request otherwise. The performance metrics considered are resource utilization and blocking probability. Results showing the impact of input parameters on these performance metrics are presented. It is found that the resource utilization is quite low. Two strategies that can be used to improve the performance for advance reservation are evaluated. The first strategy allows the start time to be delayed up to some maximum value, while the second allows the possibility of non-uniform resource allocation over the duration of the reservation. Simulation results showing the performance improvements of these two strategies are presented. Resources not used by advance reservation are used to support on-demand access. The performance metrics of interest is the mean response time. Simulation results showing the impact of resource availability and its variation over time on the mean response time are presented. These results provide valuable insights into the performance of systems with time-varying processing capacity. They can also be used to develop guidelines for the non-uniform resource allocation strategy for advance reservation in case the reserved resources are used for interactive access.
8

Modelos analiticos para probabilidades de bloqueio em redes de caminhos opticos com topologias lineares / Analytical models for blocking probabilities in optical path networks with linear topologies

Campelo, Divanilson Rodrigo de Sousa 23 February 2006 (has links)
Orientador: Helio Waldman / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-06T02:56:20Z (GMT). No. of bitstreams: 1 Campelo_DivanilsonRodrigodeSousa_D.pdf: 945421 bytes, checksum: 52541c616bcfcfd8ae2d0a50c597fcc3 (MD5) Previous issue date: 2006 / Resumo: Investigamos o problema de estimar valores de probabilidades de bloqueio em redes de caminhos ópticos com topologias lineares. Apresentamos um melhor substituto para a suposição de independência de enlaces em redes de topologia linear: a suposição de independência de objetos. Apresentamos a prova assintótica desta suposição para redes lineares infinitas com um único canal, e mostramos que a expressão assintótica é uma aproximação muito boa para anéis finitos de qualquer tamanho. Para o caso de múltiplos comprimentos de onda, apresentamos novas aproximações de carga reduzida para anéis WDM com restrição de continuidade de comprimento de onda. Para anéis com conversão plena de comprimentos de onda, propomos um método matricial inovador que permite cálculos exatos de probabilidades de bloqueio e taxa de ocupação nestas redes. Um método "escalável" para a obtenção da constante de normalização do modelo clássico de Erlang também é apresentado. Por fim, analisamos o desempenho de meios lineares bloqueantes. Apresentamos expressões exatas para o throughput em meios compartimentalizados e não-compartimentalizados, e quantificamos os ganhos de compartimentalização em meios lineares / Abstract: We address the problem of estimating blocking probabilities in optical path networks with linear topologies. We present a better substitute for the link independence assumption in networks with linear topology: the object independence assumption. We present an asymptotic proof of this assumption for in?nite single-channel networks, and we show that the asymptotic expression is a very good approximation for ?nite rings with any size. In the case of multiple wavelengths, we present new reduced load approximations for WDM rings with wavelength continuity constraint. For rings with full wavelength conversion, we propose an innovative matrix-based method for calculating exact values of blocking probabilities and occupancy rates in such networks. A scalable method for deriving the normalization constant of the Erlang¿s classical model is also presented. Finally, we analyze the performance of linear blocking media. We present exact expressions for the throughput in slotted and unslotted media, and we quantify the slotting gains in linear media / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
9

Performance comparison of two dynamic shared-path protection algorithms for WDM optical mesh networks

Sharma, Ameeth 26 January 2009 (has links)
Finding an optimal solution to the problem of fast and efficient provisioning of reliable connections and failure recovery in future intelligent optical networks is an ongoing challenge. In this dissertation, we investigate and compare the performance of an adapted shared-path protection algorithm with a more conventional approach; both designed for survivable optical Wavelength Division Multiplexing (WDM) mesh networks. The effect of different classes of service on performance is also investigated. Dedicated path protection is a proactive scheme which reserves spare resources to combat single link failures. Conventional Shared-path Protection (CSP) is desirable due to the efficient utilization of resources which results from the sharing of backup paths. Availability is an important performance assessment factor which measures the probability that a connection is in an operational state at some point in time. It is the instantaneous counterpart of reliability. Therefore, connections that do not meet their availability requirements are considered to be unreliable. Reliability Aware Shared-path Protection (RASP) adopts the advantages of CSP by provisioning reliable connections efficiently, but provides protection for unreliable connections only. With the use of a link disjoint parameter, RASP also permits the routing of partial link disjoint backup paths. A simulation study, which evaluates four performance parameters, is undertaken using a South African mesh network. The parameters that are investigated are: 1. Blocking Probability (BP), which considers the percentage of connection requests that are blocked, 2. Backup Success Ratio (BSR), which considers the number of connections that are successfully provisioned with a backup protection path, 3. Backup Primary Resource Ratio (BPR), which considers the ratio of resources utilized to cater for working traffic to the resources reserved for protection paths and lastly 4. Reliability Satisfaction Ratio (RSR), which evaluates the ratio of provisioned connections that meet their availability requirements to the total number of provisioned connections. Under dynamic traffic conditions with varying network load, simulation results show that RASP can provision reliable connections and satisfy Service Level Agreement (SLA) requirements. A competitive Blocking Probability (BP) and lower Backup Primary Resource Ratio (BPR) signify an improvement in resource utilization efficiency. A higher Backup Success Ratio (BSR) was also achieved under high Quality of Service (QoS) constraints. The significance of different availability requirements is evaluated by creating three categories, high availability, medium availability and low availability. These three categories represent three classes of service, with availability used as the QoS parameter. Within each class, the performance of RASP and CSP is observed and analyzed, using the parameters described above. Results show that both the BP and BPR increase with an increase in the availability requirements. The RSR decreases as the reliability requirements increase and a variation in BSR is also indicated. / Dissertation (MEng)--University of Pretoria, 2009. / Electrical, Electronic and Computer Engineering / unrestricted
10

QoS Aware Quorumcasting Over Optical Burst Switched Networks

Balagangadhar, B G 07 1900 (has links)
Recently there is an emergence of many Internet applications such as multimedia, video conferencing, distributed interactive simulations (DIS), and high-performance scientific computations like Grid computing. These applications require huge amount of bandwidth and a viable communication paradigm to coordinate with multiple sources and destinations. Optical networks are the potential candidates for providing high bandwidth requirement. Existing communication paradigms include broadcast, and multicast. Hence supporting these paradigms over optical networks is necessary. Multicasting over optical networks has been well investigated in the literature. QoS policies implemented in IP does not apply for Wavelength division multiplexed (WDM) or optical burst switched (OBS) networks, as the optical counterpart for store-and-forward model does not exist. Hence there is a need to provision QoS over optical networks. These QoS requirements can include contention, optical signal quality, reliability and delay. To support these diverse requirements, optical networks must be able to manage the available resources effectively. Destinations participating in the multicast session are fixed (or rather static). Due to the random contention in the network, if at least one or more destination(s) is not reachable, requested multicast session cannot be established. This results in loss of multicast request with high probability of blocking. Incorporating wavelength converters (WCs) at the core nodes can decrease the contention loss, however WCs require optical-electrical-optical (O/E/O) conversion. This increases the delay incurred by optical signal. On the other hand all-optical WCs are expensive and increase the cost of the network if deployed. Goal of this thesis is, to provide hop-to-hop QoS on an existing all-optical network (AON) with no WC and optical regeneration capability. In order to minimize the request vi Abstract vii lost due to contention in AON, we propose a variation of multicasting called Quorumcasting or Manycasting. In Quorumcasting destinations can join (or leave) to (or from) the group depending on whether they are reachable or not. In other words destinations have to be determined rather than knowing them prior, as in the case of multicasting. Quorum pool is minimum number of destinations that are required to be participated in the session for successful accomplishment of the job (k be the size of quorum pool). Providing QoS for manycasting over OBS has not been addressed in the literature. Given the multicast group (with cardinality m > k) and the number of destinations required to be participated, the contribution of this work is based on providing necessary QoS. In this thesis we study the behavior of manycasting over OBS networks. In OBS networks, packets from the upper-layer (such as IP, ATM, STM) are assembled and a burst is created at the edge router. By using O/E/O conversion at the edge nodes, these optical bursts are scheduled to the core node. Control header packet or burst header packet (BHP) is sent to prior to the transmission of burst. The BHP configures the core nodes and the burst is scheduled on the channel after certain offset time. In the first part of the thesis, we explain the different distributed applications with primary focus on Grid over OBS (GoOBS). We study the loss scenario due contention and inadequate signal quality for an unicast case in OBS network. We further extend this to manycasting. We modify the BHP header fields to make the burst aware of not only contention on the next-hop link, but also bit-error rate (BER). By using recursive signal and noise power relations, we calculate the BER (or q-factor) of the link and schedule the burst only if the required BER threshold is met. Thus all the bursts that reach the next-hop node ensure that contention and BER constraint are met. This are called “Impairment-Aware (IA) Scheduling”. Burst loss in the network increases due to BER constraint. Hence we propose algorithms to decrease the burst loss and simultaneously providing the sufficient optical signal quality. We propose three algorithms called IA-shortest path tree (IA-SPT), IA-static over provisioning (IA-SOP), and IA-dynamic membership (IA-DM). In IA-SPT destination set is sorted in the non-decreasing order of the hop-distance from source. First k of them are selected and bursts are scheduled to Abstract viii these destinations along the shortest path. In IA-SOP we select additional k0(_ m − k) destinations where k0 is the over provisioning factor. Over provisioning ensures that burst at least reach k of them, decreasing the contention blocking. However as the burst has to span more destinations, the fan-out of the multicast capable switch will be more and the BER could be high. In IA-DM destinations are dynamically added or removed, depending on contention and BER. Destination is removed and new destination is added based on the two constraints. Our simulation results shows that IA-DM out performs the other two algorithms in terms of request blocking. We show that IP-based many casting has poor performance and hence there is a need for supporting many casting over OBS networks. We verify our simulation results with the proposed analytical method. In the next part, we focus on provisioning QoS in many casting. QoS parameters considered for analysis include, signal quality i.e., optical signal to noise ratio (OSNR), reliability of the link and, propagation delay. In this work we consider application based QoS provisioning. In other words, given the threshold requirements of an application, our aim is to successfully schedule the burst to the quorum pool satisfying the threshold conditions. We use a de-centralized way of the scheduling the burst, using BHP. With the help of local-network state information, the burst is scheduled only if it satisfies multiple set of constraints. Corresponding reception of burst at the node ensures that all the QoS constraints are met and burst is forwarded to the next hop. QoS attributes are either multiplicative or additive. Noise factor of the optical signal and reliability factor are multiplicative constraints, where as propagation delay is additive. We define a path information vector, which provides the QoS information of the burst at every node. Using lattice theory we define an ordering, such that noise factor and propagation delay are minimum and reliability is maximum. Using path algebra we compute the overall QoS attributes. Due to multiple set of constraints, the request blocking could be high. We propose algorithms to minimize request blocking for Multiple Constrained Many cast Problem (MCMP). We propose two algorithms MCM-SPT and MCM-DM. We consider different set of service thresholds, such as real time and data service thresholds. Real time services impose restriction on signal quality and the propagation delay. On the other hand Abstract ix data services require high reliability and signal quality. Our simulation study shows that MCM-SPT performs better than MCM-DM for real-time services and the data services can be provisioned using MCM-DM.

Page generated in 0.0511 seconds